scholarly journals Differential Expression in Testis and Liver Transcriptomes from Four Species of Peromyscus (Rodentia: Cricetidae)

2020 ◽  
Vol 12 (1) ◽  
pp. 3698-3709
Author(s):  
Laramie L Lindsey ◽  
Roy N Platt ◽  
Caleb D Phillips ◽  
David A Ray ◽  
Robert D Bradley

Abstract The genus Peromyscus represents a rapidly diverged clade of Cricetid rodents that contains multiple cryptic species and has a propensity for morphologic conservation across its members. The unresolved relationships in previously proposed phylogenies reflect a suspected rapid adaptive radiation. To identify functional groups of genes that may be important in reproductive isolation in a reoccurring fashion across the Peromyscus phylogeny, liver and testis transcriptomes from four species (P. attwateri, P. boylii, P. leucopus, and P. maniculatus) were generated and differential expression (DE) tests were conducted. Taxa were selected to represent members diverged from a common ancestor: P. attwateri + P. boylii (clade A), and P. leucopus + P. maniculatus (clade B). Comparison of clades (A vs. B) suggested that 252 transcripts had significant DE in the liver data set, whereas significant DE was identified for 657 transcripts in the testis data set. Further, 45 genes had DE isoforms in the 657 testis transcripts and most of these functioned in major reproductive roles such as acrosome assembly, spermatogenesis, and cell cycle processes (meiosis). DE transcripts in the liver mapped to more broad gene ontology terms (metabolic processes, catabolic processes, response to chemical, and regulatory processes), and DE transcripts in the testis mapped to gene ontology terms associated with reproductive processes, such as meiosis, sperm motility, acrosome assembly, and sperm–egg fusion. These results suggest that a suite of genes that conduct similar functions in the testes may be responsible for the adaptive radiation events and potential reoccurring speciation of Peromyscus in terms of reproduction through varying expression levels.

2020 ◽  
Vol 27 (4) ◽  
pp. 313-320 ◽  
Author(s):  
Xuan Xiao ◽  
Wei-Jie Chen ◽  
Wang-Ren Qiu

Background: The information of quaternary structure attributes of proteins is very important because it is closely related to the biological functions of proteins. With the rapid development of new generation sequencing technology, we are facing a challenge: how to automatically identify the four-level attributes of new polypeptide chains according to their sequence information (i.e., whether they are formed as just as a monomer, or as a hetero-oligomer, or a homo-oligomer). Objective: In this article, our goal is to find a new way to represent protein sequences, thereby improving the prediction rate of protein quaternary structure. Methods: In this article, we developed a prediction system for protein quaternary structural type in which a protein sequence was expressed by combining the Pfam functional-domain and gene ontology. turn protein features into digital sequences, and complete the prediction of quaternary structure through specific machine learning algorithms and verification algorithm. Results: Our data set contains 5495 protein samples. Through the method provided in this paper, we classify proteins into monomer, or as a hetero-oligomer, or a homo-oligomer, and the prediction rate is 74.38%, which is 3.24% higher than that of previous studies. Through this new feature extraction method, we can further classify the four-level structure of proteins, and the results are also correspondingly improved. Conclusion: After the applying the new prediction system, compared with the previous results, we have successfully improved the prediction rate. We have reason to believe that the feature extraction method in this paper has better practicability and can be used as a reference for other protein classification problems.


2021 ◽  
Vol 104 (3) ◽  
pp. 003685042110180
Author(s):  
Xiao Lin ◽  
Meng Zhou ◽  
Zehong Xu ◽  
Yusheng Chen ◽  
Fan Lin

In this study, we aimed to screen out genes associated with a high risk of postoperative recurrence of lung adenocarcinoma and investigate the possible mechanisms of the involvement of these genes in the recurrence of lung adenocarcinoma. We identify Hub genes and verify the expression levels and prognostic roles of these genes. Datasets of GSE40791, GSE31210, and GSE30219 were obtained from the Gene Expression Omnibus database. Enrichment analysis of gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were performed for the screened candidate genes using the DAVID database. Then, we performed protein–protein interaction (PPI) network analysis through the database STRING. Hub genes were screened out using Cytoscape software, and their expression levels were determined by the GEPIA database. Finally, we assessed the relationships of Hub genes expression levels and the time of survival. Forty-five candidate genes related to a high-risk of lung adenocarcinoma recurrence were screened out. Gene ontology analysis showed that these genes were enriched in the mitotic spindle assembly checkpoint, mitotic sister chromosome segregation, G2/M-phase transition of the mitotic cell cycle, and ATP binding, etc. KEGG analysis showed that these genes were involved predominantly in the cell cycle, p53 signaling pathway, and oocyte meiosis. We screened out the top ten Hub genes related to high expression of lung adenocarcinoma from the PPI network. The high expression levels of eight genes (TOP2A, HMMR, MELK, MAD2L1, BUB1B, BUB1, RRM2, and CCNA2) were related to short recurrence-free survival and they can be used as biomarkers for high risk of lung adenocarcinoma recurrence. This study screened out eight genes associated with a high risk of lung adenocarcinoma recurrence, which might provide novel insights into researching the recurrence mechanisms of lung adenocarcinoma as well as into the selection of targets in the treatment of the disease.


2019 ◽  
Vol 128 (3) ◽  
pp. 583-591
Author(s):  
Leo Joseph ◽  
Alex Drew ◽  
Ian J Mason ◽  
Jeffrey L Peters

Abstract We reassessed whether two parapatric non-sister Australian honeyeater species (Aves: Meliphagidae), varied and mangrove honeyeaters (Gavicalis versicolor and G. fasciogularis, respectively), that diverged from a common ancestor c. 2.5 Mya intergrade in the Townsville area of north-eastern Queensland. Consistent with a previous specimen-based study, by using genomics methods we show one-way gene flow for autosomal but not Z-linked markers from varied into mangrove honeyeaters. Introgression barely extends south of the area of parapatry in and around the city of Townsville. While demonstrating the long-term porosity of species boundaries over several million years, our data also suggest a clear role of sex chromosomes in maintaining reproductive isolation.


2007 ◽  
Vol 25 (4) ◽  
pp. 369-375 ◽  
Author(s):  
Hiroyuki Morimoto ◽  
Akiko Ozaki ◽  
Hirohiko Okamura ◽  
Kaya Yoshida ◽  
Bruna Rabelo Amorim ◽  
...  

2022 ◽  
Vol 12 (3) ◽  
pp. 523-532
Author(s):  
Xin Yan ◽  
Chunfeng Liang ◽  
Xinghuan Liang ◽  
Li Li ◽  
Zhenxing Huang ◽  
...  

<sec> <title>Objective:</title> This study aimed to identify the potential key genes associated with the progression and prognosis of adrenocortical carcinoma (ACC). </sec> <sec> <title>Methods:</title> Differentially expressed genes (DEGs) in ACC cells and normal adrenocortical cells were assessed by microarray from the Gene Expression Omnibus database. The biological functions of the classified DEGs were examined by Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes pathway (KEGG) enrichment analyses and a protein–protein interaction (PPI) network was mapped using Cytoscape software. MCODE software was also used for the module analysis and then 4 algorithms of cytohubba software were used to screen hub genes. The overall survival (OS) examination of the hub genes was then performed by the ualcan online tool. </sec> <sec> <title>Results:</title> Two GSEs (GSE12368, GSE33371) were downloaded from GEO including 18 and 43 cases, respectively. One hundred and sixty-nine DEGs were identified, including 57 upregulated genes and 112 downregulated genes. The Gene Ontology (GO) analyses showed that the upregulated genes were significantly enriched in the mitotic cytokines is, nucleus and ATP binding, while the downregulated genes were involved in the positive regulation of cardiac muscle contraction, extracellular space, and heparin-binding (P < 0.05). The Kyoto Encyclopedia of Genes and Genomes pathway (KEGG) pathway examination showed significant pathways including the cell cycle and the complement and coagulation cascades. The protein– protein interaction (PPI) network consisted of 162 nodes and 847 edges, including mitotic nuclear division, cytoplasmic, protein kinase binding, and cell cycle. All 4 identified hub genes (FOXM1, UBE2C, KIF11, and NDC80) were associated with the prognosis of adrenocortical carcinoma (ACC) by survival analysis. </sec> <sec> <title>Conclusions:</title> The present study offered insights into the molecular mechanism of adrenocortical carcinoma (ACC) that may be beneficial in further analyses. </sec>


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Xiaoshan Su ◽  
Junjie Chen ◽  
Xiaoping Lin ◽  
Xiaoyang Chen ◽  
Zhixing Zhu ◽  
...  

Abstract Background Cigarette smoking is a major risk factor for chronic obstructive pulmonary disease (COPD) and lung cancer. Epithelial–mesenchymal transition (EMT) is an essential pathophysiological process in COPD and plays an important role in airway remodeling, fibrosis, and malignant transformation of COPD. Previous studies have indicated FERMT3 is downregulated and plays a tumor-suppressive role in lung cancer. However, the role of FERMT3 in COPD, including EMT, has not yet been investigated. Methods The present study aimed to explore the potential role of FERMT3 in COPD and its underlying molecular mechanisms. Three GEO datasets were utilized to analyse FERMT3 gene expression profiles in COPD. We then established EMT animal models and cell models through cigarette smoke (CS) or cigarette smoke extract (CSE) exposure to detect the expression of FERMT3 and EMT markers. RT-PCR, western blot, immunohistochemical, cell migration, and cell cycle were employed to investigate the potential regulatory effect of FERMT3 in CSE-induced EMT. Results Based on Gene Expression Omnibus (GEO) data set analysis, FERMT3 expression in bronchoalveolar lavage fluid was lower in COPD smokers than in non-smokers or smokers. Moreover, FERMT3 expression was significantly down-regulated in lung tissues of COPD GOLD 4 patients compared with the control group. Cigarette smoke exposure reduced the FERMT3 expression and induces EMT both in vivo and in vitro. The results showed that overexpression of FERMT3 could inhibit EMT induced by CSE in A549 cells. Furthermore, the CSE-induced cell migration and cell cycle progression were reversed by FERMT3 overexpression. Mechanistically, our study showed that overexpression of FERMT3 inhibited CSE-induced EMT through the Wnt/β-catenin signaling. Conclusions In summary, these data suggest FERMT3 regulates cigarette smoke-induced epithelial–mesenchymal transition through Wnt/β-catenin signaling. These findings indicated that FERMT3 was correlated with the development of COPD and may serve as a potential target for both COPD and lung cancer.


2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Jiali Meng ◽  
Yuanchao Wei ◽  
Qing Deng ◽  
Ling Li ◽  
Xiaolong Li

Abstract Background Hepatocellular carcinoma (HCC) is a primary liver cancer with a high mortality rate. However, the molecular mechanism of HCC formation remains to be explored and studied. Objective To investigate the expression of TOP2A in hepatocellular carcinoma (HCC) and its prognosis. Methods The data set of hepatocellular carcinoma was downloaded from GEO database for differential gene analysis, and hub gene was identified by Cytoscape. GEPIA was used to verify the expression of HUB gene and evaluate its prognostic value. Then TOP2A was selected as the research object of this paper by combining literature and clinical sample results. Firstly, TIMER database was used to study TOP2A, and the differential expression of TOP2A gene between normal tissues and cancer tissues was analyzed, as well as the correlation between TOP2A gene expression and immune infiltration of HCC cells. Then, the expression of top2a-related antibodies was analyzed using the Human Protein Atlas database, and the differential expression of TOP2A was verified by immunohistochemistry. Then, SRTING database and Cytoscape were used to establish PPI network for TOP2A and protein–protein interaction analysis was performed. The Oncomine database and cBioPortal were used to express and identify TOP2A mutation-related analyses. The expression differences of TOP2A gene were identified by LinkedOmics, and the GO and KEGG pathways were analyzed in combination with related genes. Finally, Kaplan–Meier survival analysis was performed to analyze the clinical and prognosis of HCC patients. Results TOP2A may be a new biomarker and therapeutic target for hepatocellular carcinoma.


2021 ◽  
Author(s):  
◽  
Sergio Diaz Martinez

<p>Understanding speciation is one of the great challenges in evolutionary biology as many of the processes involved in speciation, as well as the forces leading to morphological and genetic differentiation, are not fully understood. Three main modes of speciation have been described: allopatric, parapatric and sympatric. Sympatric speciation is the most enigmatic mode because in the absence of physical barriers, disruptive selection, assortative mating and hybridization play central roles in reproductive isolation. Although it is accepted that sympatric speciation is possible, only a few examples of this process exist to date. Another common method of speciation in plants and algae is via polyploidization. Recently, a promising system to study speciation in sympatry was discovered: the endemic Cladophorales species flock in ancient Lake Baikal, Russia. The flock consists of sixteen taxa grouped in four genera: Chaetocladiella, Chaetomorpha, Cladophora and Gemmiphora. In spite of their morphological diversity, recent molecular analyses have shown that this is a monophyletic group with low genetic variation and nested within the morphologically simple genus Rhizoclonium. Due to their high number of species, endemism and sympatric distribution, many interesting questions have arisen such as what processes are involved in speciation, and whether this group might be a novel example of sympatric speciation. In this study, we analysed the population genetics of the endemic Baikalian Cladophorales to infer the processes shaping the evolution of the group. First, a set of microsatellites was designed using high-throughput sequencing data. Second, species delimitation methods based on genetic clustering were performed. Third, the population genetics of three widely distributed species was analysed looking for evidence of panmixia, a common criteria to support sympatric speciation. A total of 11 microsatellites that mostly cross-amplify between most species were obtained. The genotyping revealed that most loci had more than two alleles per individual indicating polyploidy. As such, the analyses required a different approach which consisted in coding the genotypes as ‘allelic phenotypes’, allowing the use of individuals of different ploidy levels in the same data set. The species delimitation of 15 operative morphotaxa and 727 individuals supported reproductive isolation of five morphotaxa and two hypotheses of conspecificity. However, some morphotaxa showed unclear assignments revealing the need of further research to clarify their reproductive limits. Finally, the population genetics of Chaetomorpha moniliformis, Cladophora compacta and Cl. kursanovii revealed patterns of genetic variation and structure that suggest different reproductive strategies and dispersal abilities. This demonstrates that contrasting biological characteristics may arise in closely related lineages: Chaetomorpha moniliformis with dominant asexual reproduction and long dispersal abilities; Cladophora compacta with high genetic diversity, no population structure and likely to reproduce sexually; Cl. kursanovii with a structure congruent with geographic distribution and more restricted dispersal. The results suggest that polyploidy, rather than speciation with gene flow, is the force driving the reproductive isolation and evolution of this flock. Although many questions remain to be studied, this research provides the first insights into the diversification of this Cladophorales species flock and contributes to the understanding of speciation in freshwater algae.</p>


2019 ◽  
Vol 36 (8) ◽  
pp. 1686-1700 ◽  
Author(s):  
Covadonga Vara ◽  
Laia Capilla ◽  
Luca Ferretti ◽  
Alice Ledda ◽  
Rosa A Sánchez-Guillén ◽  
...  

Abstract One of the major challenges in evolutionary biology is the identification of the genetic basis of postzygotic reproductive isolation. Given its pivotal role in this process, here we explore the drivers that may account for the evolutionary dynamics of the PRDM9 gene between continental and island systems of chromosomal variation in house mice. Using a data set of nearly 400 wild-caught mice of Robertsonian systems, we identify the extent of PRDM9 diversity in natural house mouse populations, determine the phylogeography of PRDM9 at a local and global scale based on a new measure of pairwise genetic divergence, and analyze selective constraints. We find 57 newly described PRDM9 variants, this diversity being especially high on Madeira Island, a result that is contrary to the expectations of reduced variation for island populations. Our analysis suggest that the PRDM9 allelic variability observed in Madeira mice might be influenced by the presence of distinct chromosomal fusions resulting from a complex pattern of introgression or multiple colonization events onto the island. Importantly, we detect a significant reduction in the proportion of PRDM9 heterozygotes in Robertsonian mice, which showed a high degree of similarity in the amino acids responsible for protein–DNA binding. Our results suggest that despite the rapid evolution of PRDM9 and the variability detected in natural populations, functional constraints could facilitate the accumulation of allelic combinations that maintain recombination hotspot symmetry. We anticipate that our study will provide the basis for examining the role of different PRDM9 genetic backgrounds in reproductive isolation in natural populations.


Sign in / Sign up

Export Citation Format

Share Document