scholarly journals FERMT3 mediates cigarette smoke-induced epithelial–mesenchymal transition through Wnt/β-catenin signaling

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Xiaoshan Su ◽  
Junjie Chen ◽  
Xiaoping Lin ◽  
Xiaoyang Chen ◽  
Zhixing Zhu ◽  
...  

Abstract Background Cigarette smoking is a major risk factor for chronic obstructive pulmonary disease (COPD) and lung cancer. Epithelial–mesenchymal transition (EMT) is an essential pathophysiological process in COPD and plays an important role in airway remodeling, fibrosis, and malignant transformation of COPD. Previous studies have indicated FERMT3 is downregulated and plays a tumor-suppressive role in lung cancer. However, the role of FERMT3 in COPD, including EMT, has not yet been investigated. Methods The present study aimed to explore the potential role of FERMT3 in COPD and its underlying molecular mechanisms. Three GEO datasets were utilized to analyse FERMT3 gene expression profiles in COPD. We then established EMT animal models and cell models through cigarette smoke (CS) or cigarette smoke extract (CSE) exposure to detect the expression of FERMT3 and EMT markers. RT-PCR, western blot, immunohistochemical, cell migration, and cell cycle were employed to investigate the potential regulatory effect of FERMT3 in CSE-induced EMT. Results Based on Gene Expression Omnibus (GEO) data set analysis, FERMT3 expression in bronchoalveolar lavage fluid was lower in COPD smokers than in non-smokers or smokers. Moreover, FERMT3 expression was significantly down-regulated in lung tissues of COPD GOLD 4 patients compared with the control group. Cigarette smoke exposure reduced the FERMT3 expression and induces EMT both in vivo and in vitro. The results showed that overexpression of FERMT3 could inhibit EMT induced by CSE in A549 cells. Furthermore, the CSE-induced cell migration and cell cycle progression were reversed by FERMT3 overexpression. Mechanistically, our study showed that overexpression of FERMT3 inhibited CSE-induced EMT through the Wnt/β-catenin signaling. Conclusions In summary, these data suggest FERMT3 regulates cigarette smoke-induced epithelial–mesenchymal transition through Wnt/β-catenin signaling. These findings indicated that FERMT3 was correlated with the development of COPD and may serve as a potential target for both COPD and lung cancer.

2021 ◽  
Author(s):  
Xiaoshan Su ◽  
Junjie Chen ◽  
Xiaoping Lin ◽  
Xiaoyang Chen ◽  
Zhixing Zhu ◽  
...  

Abstract Background: Cigarette smoking is a major risk factor for chronic obstructive pulmonary disease (COPD) and lung cancer. Epithelial-mesenchymal transition (EMT) is an essential pathophysiological process in COPD and plays an important role in airway remodeling, fibrosis, and malignant transformation of COPD. Previous studies have indicated FERMT3 is downregulated and plays a tumor suppressive role in lung cancer. However, the role of FERMT3 in COPD, including EMT, has not yet been investigated. Methods: The present study aimed to explore the potential role of FERMT3 in COPD and its underlying molecular mechanisms. Two GEO datasets were combined to identify FERMT3 involved in COPD. The expression of FERMT3 was identified in COPD from two GEO datasets. We then established EMT animal models and cell models through cigarette smoke (CS) or cigarette smoke extract (CSE) exposure to detect the expression of FERMT3 and EMT markers. RT-PCR, western blot, immunohistochemical, cell migration, and cell cycle were employed to investigate the potential regulatory effect of FERMT3 in CSE-induced EMT. Results: Based on the GEO dataset analysis, the expression of FERMT3 was downregulated in COPD-smoker bronchoalveolar lavage fluid than that in Non-smoker. Cigarette smoke exposure reduced the FERMT3 expression and induces EMT both in vivo and in vitro. The results showed that overexpression of FERMT3 could inhibit EMT induced by CSE in A549 cells. Furthermore, the CSE-induced cell migration and cell cycle progression were reversed by FERMT3 overexpression. Mechanistically, our study showed that overexpression of FERMT3 inhibited CSE-induced EMT through the Wnt/β-catenin signaling. Conclusions: In summary, these data suggest FERMT3 regulates cigarette smoke-induced epithelial-mesenchymal transition through Wnt/β-Catenin signaling. These findings indicated that FERMT3 was correlated with the development of COPD and may serve as a potential target for both COPD and lung cancer.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Kejun Liu ◽  
Xianwen Chen ◽  
Ligang Wu ◽  
Shiyuan Chen ◽  
Nianxin Fang ◽  
...  

Abstract Background ID1 is associated with resistance to the first generation of EGFR tyrosine kinase inhibitors (EGFR-TKIs) in non-small cell lung cancer (NSCLC). However, the effect of ID1 expression on osimertinib resistance in EGFR T790M-positive NSCLC is not clear. Methods We established a drug-resistant cell line, H1975/OR, from the osimertinib-sensitive cell line H1975. Alterations in ID1 protein expression and Epithelial–mesenchymal transition (EMT)-related proteins were detected with western blot analysis. RT-PCR was used to evaluate the differences of gene mRNA levels. ID1 silencing and overexpression were used to investigate the effects of related gene on osimertinib resistance. Cell Counting Kit-8 (CCK8) was used to assess the proliferation rate in cells with altered of ID1 expression. Transwell assay was used to evaluate the invasion ability of different cells. The effects on the cell cycle and apoptosis were also compared using flow cytometry. Results In our study, we found that in osimertinib-resistant NSCLC cells, the expression level of the EMT-related protein E-cadherin was lower than that of sensitive cells, while the expression level of ID1 and vimentin were higher than those of sensitive cells. ID1 expression levels was closely related to E-cadherin and vimentin in both osimertinib-sensitive and resistant cells. Alteration of ID1 expression in H1975/OR cells could change the expression of E-cadherin. Downregulating ID1 expression in H1975/OR cells could inhibit cell proliferation, reduce cell invasion, promote cell apoptosis and arrested the cell cycle in the G1/G0 stage phase. Our study suggests that ID1 may induce EMT in EGFR T790M-positive NSCLC, which mediates drug resistance of osimertinib. Conclusions Our study revealed the mechanism of ID1 mediated resistance to osimertinib in EGFR T790M-positive NSCLC through EMT, which may provide new ideas and methods for the treatment of EGFR mutated NSCLC after osimertinib resistance.


2020 ◽  
Vol 9 ◽  
pp. 1812
Author(s):  
Solmaz Rahmani Barouji ◽  
Arman Shahabi ◽  
Mohammadali Torbati ◽  
Seyyed Mohammad Bagher Fazljou ◽  
Ahmad Yari Khosroushahi

Background: Mummy (Iranian pure shilajit) is a remedy with possessing anti-inflammatory, antioxidant and anticancer activities. This study aimed to examine mummy effects on epithelial-mesenchymal transition (EMT) and invasiveness of MCF-7 and MDA-MB-231 breast cancer (BC) cell lines with underlying its mechanism. Materials and Methods: The dose-dependent inhibitory effect of the mummy on cell proliferation in vitro was determined using the MTT assay.  Flow cytometry and 4’,6-diamidino-2-phenylindole dihydrochloride staining were respectively used for quantitative and qualitative analysis of cellular apoptosis, and gene expression analysis was conducted using real-time PCR. Results: MDA-MB-231 showed more sensitivity than the MCF-7 cell line to the anticancer activity of mummy, while mummy did not exhibit significant cell cytotoxicity against human normal cells (MCF-10A). The gene expression profile demonstrated a significant decrease in TGF-β1, TGF-βR1, TWIST1, NOTCH1, CTNNB1, SRC along with an increase in E-cadherin mRNA levels in mummy treated cells compared to the untreated control group (P≤0.05). Conclusion: Mummy triggers inhibition of EMT and metastasis in breast cancer cells mainly through the downregulation of TGFβ1 activity, and more studies required to find its specific anticancer activity with details. [GMJ.2020;9:e1812]


2020 ◽  
Author(s):  
Kejun Liu ◽  
Nianxin Fang ◽  
Ligang Wu ◽  
Shiyuan Chen ◽  
Limin Cai ◽  
...  

Abstract Objective To analyzed the effect of ID1 overexpression on osimertinib resistance to T790M positive non-small cell lung cancer (NSCLC). Methods We established drug resistant cell line H1975/OR from osimertinib sensitive cell line H1975. Protein alterations of ID1 and Epithelial mesenchymal transition (EMT) were detected with western blot analysis. RT-PCR was used to evaluate the differences of gene mRNA. ID1 silencing and overexpression was used to investigate the effect of related gene on osimertinib resistance. Cell Counting Kit-8 (CCK8) was used to assess proliferation rate of ID1 differently expressed cells. Cell cycle and apoptosis was compared using flow cytometry. Results In our study, we found that in osimertinib resistant NSCLC cells, the expression level of EMT related protein E-cadherin was lower than that of sensitive cells, while the expression level of ID1 and vimentin was higher than that of sensitive cells. ID1 expression level was closely related to E-cadherin and vimentin both in osimertinib sensitive and resistant cells. Alteration of ID1 expression in H1975/OR cells could change the expression of E-cadherin. Downregulating ID1 expression of H1975/OR cells could promote the apoptosis induced by osimertinib and block cell cycle at G1/G0 stage. Our study indicated that ID1 may induce EMT in T790M positive NSCLC, which mediates drug resistance of osimertinib. Conclusions Our study reveal the mechanism of ID1 mediated resistance to osimertinib in T790M positive NSCLC through EMT, which may provide new ideas and methods for treatment of EGFR mutated NSCLC after osimertinib resistance.


Cancers ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1586
Author(s):  
Salinee Jantrapirom ◽  
Luca Lo Piccolo ◽  
Dumnoensun Pruksakorn ◽  
Saranyapin Potikanond ◽  
Wutigri Nimlamool

Ubiquilins or UBQLNs, members of the ubiquitin-like and ubiquitin-associated domain (UBL-UBA) protein family, serve as adaptors to coordinate the degradation of specific substrates via both proteasome and autophagy pathways. The UBQLN substrates reveal great diversity and impact a wide range of cellular functions. For decades, researchers have been attempting to uncover a puzzle and understand the role of UBQLNs in human cancers, particularly in the modulation of oncogene’s stability and nucleotide excision repair. In this review, we summarize the UBQLNs’ genetic variants that are associated with the most common cancers and also discuss their reliability as a prognostic marker. Moreover, we provide an overview of the UBQLNs networks that are relevant to cancers in different ways, including cell cycle, apoptosis, epithelial-mesenchymal transition, DNA repairs and miRNAs. Finally, we include a future prospective on novel ubiquilin-based cancer therapies.


2019 ◽  
Vol 8 (2) ◽  
pp. 205 ◽  
Author(s):  
Shengnan Xu ◽  
Kathryn Ware ◽  
Yuantong Ding ◽  
So Kim ◽  
Maya Sheth ◽  
...  

The evolution of therapeutic resistance is a major cause of death for cancer patients. The development of therapy resistance is shaped by the ecological dynamics within the tumor microenvironment and the selective pressure of the host immune system. These selective forces often lead to evolutionary convergence on pathways or hallmarks that drive progression. Thus, a deeper understanding of the evolutionary convergences that occur could reveal vulnerabilities to treat therapy-resistant cancer. To this end, we combined phylogenetic clustering, systems biology analyses, and molecular experimentation to identify convergences in gene expression data onto common signaling pathways. We applied these methods to derive new insights about the networks at play during transforming growth factor-β (TGF-β)-mediated epithelial–mesenchymal transition in lung cancer. Phylogenetic analyses of gene expression data from TGF-β-treated cells revealed convergence of cells toward amine metabolic pathways and autophagy during TGF-β treatment. Knockdown of the autophagy regulatory, ATG16L1, re-sensitized lung cancer cells to cancer therapies following TGF-β-induced resistance, implicating autophagy as a TGF-β-mediated chemoresistance mechanism. In addition, high ATG16L expression was found to be a poor prognostic marker in multiple cancer types. These analyses reveal the usefulness of combining evolutionary and systems biology methods with experimental validation to illuminate new therapeutic vulnerabilities for cancer.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Shalini Singh ◽  
Isabella W. Y. Mak ◽  
Divya Handa ◽  
Michelle Ghert

Giant cell tumor of bone (GCT) is a bone tumor consisting of numerous multinucleated osteoclastic giant cells involved in bone resorption and neoplastic osteoblast-like stromal cells responsible for tumor growth. The tumor occasionally metastasizes to the lung; however, factors leading to metastasis in this tumor are unknown. The TWIST-1 protein (also referred to as TWIST) has been suggested to be involved in epithelial-mesenchymal transition (EMT) and tumor progression in some cancers. In this study we investigated the functional role of TWIST in GCT cell angiogenesis and migration. Overexpression of TWIST in neoplastic GCT stromal cells significantly increased mRNA and protein expression of VEGF and VEGFR1 in vitro, whereas knockdown of TWIST resulted in decreased VEGF and VEGFR1 expression. A stable cell line with TWIST overexpression resulted in features of EMT including increased cell migration and downregulation of E-cadherin. The results of our study indicate that TWIST may play an important role in angiogenesis and cell migration in GCT.


Oncogene ◽  
2015 ◽  
Vol 35 (24) ◽  
pp. 3151-3162 ◽  
Author(s):  
Q Zhang ◽  
T Wei ◽  
K Shim ◽  
K Wright ◽  
K Xu ◽  
...  

Abstract Sprouty (SPRY) appears to act as a tumor suppressor in cancer, whereas we demonstrated that SPRY2 functions as a putative oncogene in colorectal cancer (CRC) (Oncogene, 2010, 29: 5241–5253). We investigated the mechanisms by which SPRY regulates epithelial–mesenchymal transition (EMT) in CRC. SPRY1 and SPRY2 mRNA transcripts were significantly upregulated in human CRC. Suppression of SPRY2 repressed AKT2 and EMT-inducing transcription factors and significantly increased E-cadherin expression. Concurrent downregulation of SPRY1 and SPRY2 also increased E-cadherin and suppressed mesenchymal markers in colon cancer cells. An inverse expression pattern between AKT2 and E-cadherin was established in a human CRC tissue microarray. SPRY2 negatively regulated miR-194-5p that interacts with AKT2 3′ untranslated region. Mir-194 mimics increased E-cadherin expression and suppressed cancer cell migration and invasion. By confocal microscopy, we demonstrated redistribution of E-cadherin to plasma membrane in colon cancer cells transfected with miR-194. Spry1 −/− and Spry2 −/− double mutant mouse embryonic fibroblasts exhibited decreased cell migration while acquiring several epithelial markers. In CRC, SPRY drive EMT and may serve as a biomarker of poor prognosis.


Sign in / Sign up

Export Citation Format

Share Document