scholarly journals Prepupal differentiation of Drosophila imaginal discs: identification of four genes whose transcripts accumulate in response to a pulse of 20-hydroxyecdysone.

Genetics ◽  
1988 ◽  
Vol 120 (2) ◽  
pp. 465-474
Author(s):  
K Fechtel ◽  
J E Natzle ◽  
E E Brown ◽  
J W Fristrom

Abstract We have isolated and initially characterized a novel set of four genes expressed during the prepupal differentiation of imaginal discs of Drosophila melanogaster. These four ecdysone-dependent genes are named EDG-42A, EDG-64CD, EDG-78E and EDG-84A-1 based on their respective chromosomal locations. Their expression is like that expected for genes encoding proteins that participate in the formation of the pupal cuticle. Transcripts complementary to these genes accumulate in imaginal discs during an 18-hr in vitro culture period that begins with a 6-hr pulse of 20-hydroxyecdysone (20-HE). Transcripts for three of these genes were not detected in imaginal discs following culture in the absence or the continuous presence of 20-HE (1 microgram/ml). Transcripts corresponding to EDG-64CD exhibit delayed accumulation in the continuous presence of 20-HE. Transcripts corresponding to three of the genes are only detected in the prepupal stage of development. Only EDG-64CD is complementary to transcripts present at other stages of development. One of the genes, EDG-78E, encodes a pupal cuticle protein. This is the first reported isolation of a set of steroid hormone-responsive genes that require first the presence, then removal of hormone for transcript accumulation.

Development ◽  
1989 ◽  
Vol 106 (4) ◽  
pp. 649-656 ◽  
Author(s):  
K. Fechtel ◽  
D.K. Fristrom ◽  
J.W. Fristrom

The components of the pupal cuticle are the main differentiation products synthesized by both the larval and adult epidermis during the prepupal period of Drosophila development. The pupal cuticle is formed in vitro by imaginal discs in response to a 6 h pulse of 20-hydroxyecdysone (20-HE). We previously described the isolation and initial characterization of four ecdysone-dependent genes (EDGs) whose expression in imaginal discs occurs only in response to a pulse of 20-HE. In this report, we demonstrate that the pattern of temporal and tissue-specific expression of these EDGs in vivo is like that expected for genes that encode pupal cuticle proteins. Transcripts of these genes are detected in prepupae only in the epidermis and only when cuticle components are synthesized and secreted. Nonetheless, their temporal and spatial patterns of accumulation differ. EDG-84A-1 transcripts accumulate only in prepupae and only in imaginal cells. EDG-78E and EDG-64CD transcripts accumulate at the same time in both larval and imaginal cells. EDG42-A transcripts appear first in prepupae in imaginal cells and then, after a 2–4 h lag, in larval cells. It is evident that some genes are not restricted in their expression to only larval or imaginal epidermis.


1982 ◽  
Vol 91 (2) ◽  
pp. 337-350 ◽  
Author(s):  
James W. Fristrom ◽  
John Doctor ◽  
Dianne K. Fristrom ◽  
W.Robert Logan ◽  
Donald J. Silvert
Keyword(s):  

1985 ◽  
Vol 101 (1) ◽  
pp. 189-200 ◽  
Author(s):  
J Doctor ◽  
D Fristrom ◽  
J W Fristrom

We investigated the synthesis and localization of Drosophila pupal cuticle proteins by immunochemical techniques using both a complex antiserum and monoclonal antibodies. A set of low molecular weight (15,000-25,000) pupal cuticle proteins are synthesized by the imaginal disk epithelium before pupation. After pupation, synthesis of the low molecular weight proteins ceases and a set of unrelated high molecular weight proteins (40,000-82,000) are synthesized and incorporated into the pupal cuticle. Ultrastructural changes in the cuticle deposited before and after pupation correlate with the switch in cuticle protein synthesis. A similar biphasic accumulation of low and high molecular weight pupal cuticle proteins is also seen in imaginal discs cultured in vitro. The low molecular weight pupal cuticle proteins accumulate in response to a pulse of the insect steroid hormone 20-hydroxyecdysone and begin to appear 6 h after the withdrawal of the hormone from the culture medium. The high molecular weight pupal cuticle proteins accumulate later in culture; a second pulse of hormone appears to be necessary for the accumulation of two of these proteins.


Molecules ◽  
2019 ◽  
Vol 24 (13) ◽  
pp. 2408 ◽  
Author(s):  
Nathalie D. Lackus ◽  
Nora P. Petersen ◽  
Raimund Nagel ◽  
Axel Schmidt ◽  
Sandra Irmisch ◽  
...  

In response to insect herbivory, poplar releases a blend of volatiles that plays important roles in plant defense. Although the volatile bouquet is highly complex and comprises several classes of compounds, it is dominated by mono- and sesquiterpenes. The most common precursors for mono- and sesquiterpenes, geranyl diphosphate (GPP) and (E,E)-farnesyl diphosphate (FPP), respectively, are in general produced by homodimeric or heterodimeric trans-isopentenyl diphosphate synthases (trans-IDSs) that belong to the family of prenyltransferases. To understand the molecular basis of herbivory-induced terpene formation in poplar, we investigated the trans-IDS gene family in the western balsam poplar Populus trichocarpa. Sequence comparisons suggested that this species possesses a single FPP synthase gene (PtFPPS1) and four genes encoding two large subunits (PtGPPS1.LSU and PtGPPS2.LSU) and two small subunits (PtGPPS.SSU1 and PtGPPS.SSU2) of GPP synthases. Transcript accumulation of PtGPPS1.LSU and PtGPPS.SSU1 was significantly upregulated upon leaf herbivory, while the expression of PtFPPS1, PtGPPS2.LSU, and PtGPPS.SSU2 was not influenced by the herbivore treatment. Heterologous expression and biochemical characterization of recombinant PtFPPS1, PtGPPS1.LSU, and PtGPPS2.LSU confirmed their respective IDS activities. Recombinant PtGPPS.SSU1 and PtGPPS.SSU2, however, had no enzymatic activity on their own, but PtGPPS.SSU1 enhanced the GPP synthase activities of PtGPPS1.LSU and PtGPPS2.LSU in vitro. Altogether, our data suggest that PtGPPS1.LSU and PtGPPS2.LSU in combination with PtGPPS.SSU1 may provide the substrate for herbivory-induced monoterpene formation in P. trichocarpa. The sole FPP synthase PtFPPS1 likely produces FPP for both primary and specialized metabolism in this plant species.


1971 ◽  
Vol 68 (1_Suppl) ◽  
pp. S279-S294 ◽  
Author(s):  
Paul Robel

ABSTRACT Of the information available on steroid hormone metabolism in responsive tissues, only that relating hormone metabolism to physiological activity is reviewed, i. e. metabolite activity in isolated in vitro systems, binding of metabolites to target tissue receptors, specific steroid hormone metabolizing enzymes and relationship of hormone metabolism to target organ physiological state. Further, evidence is presented in the androgen field, demonstrating 5α-reduced metabolites, formed inside the target cells, as active compounds. This has led to a consideration of testosterone as a »prehormone«. The possibility that similar events take place in tissues responding to progesterone is discussed. Finally, the role of hormone metabolism in the regulation of hormone availability and/or renewal in target cells is discussed. In this context, reference is made to the potential role of plasma binding proteins and cytosol receptors.


Genetics ◽  
1997 ◽  
Vol 147 (3) ◽  
pp. 1213-1224
Author(s):  
Jean-Philippe Charles ◽  
Carol Chihara ◽  
Shamim Nejad ◽  
Lynn M Riddiford

A 36-kb genomic DNA segment of the Drosophila melanogaster genome containing 12 clustered cuticle genes has been mapped and partially sequenced. The cluster maps at 65A 5-6 on the left arm of the third chromosome, in agreement with the previously determined location of a putative cluster encompassing the genes for the third instar larval cuticle proteins LCP5, LCP6 and LCP8. This cluster is the largest cuticle gene cluster discovered to date and shows a number of surprising features that explain in part the genetic complexity of the LCP5, LCP6 and LCP8 loci. The genes encoding LCP5 and LCP8 are multiple copy genes and the presence of extensive similarity in their coding regions gives the first evidence for gene conversion in cuticle genes. In addition, five genes in the cluster are intronless. Four of these five have arisen by retroposition. The other genes in the cluster have a single intron located at an unusual location for insect cuticle genes.


2021 ◽  
Vol 22 (11) ◽  
pp. 5968
Author(s):  
Egor A. Turovsky ◽  
Maria V. Turovskaya ◽  
Evgeniya I. Fedotova ◽  
Alexey A. Babaev ◽  
Viktor S. Tarabykin ◽  
...  

Transcription factors Satb1 and Satb2 are involved in the processes of cortex development and maturation of neurons. Alterations in the expression of their target genes can lead to neurodegenerative processes. Molecular and cellular mechanisms of regulation of neurotransmission by these transcription factors remain poorly understood. In this study, we have shown that transcription factors Satb1 and Satb2 participate in the regulation of genes encoding the NMDA-, AMPA-, and KA- receptor subunits and the inhibitory GABA(A) receptor. Deletion of gene for either Satb1 or Satb2 homologous factors induces the expression of genes encoding the NMDA receptor subunits, thereby leading to higher amplitudes of Ca2+-signals in neurons derived from the Satb1-deficient (Satb1fl/+ * NexCre/+) and Satb1-null mice (Satb1fl/fl * NexCre/+) in response to the selective agonist reducing the EC50 for the NMDA receptor. Simultaneously, there is an increase in the expression of the Gria2 gene, encoding the AMPA receptor subunit, thus decreasing the Ca2+-signals of neurons in response to the treatment with a selective agonist (5-Fluorowillardiine (FW)). The Satb1 deletion increases the sensitivity of the KA receptor to the agonist (domoic acid), in the cortical neurons of the Satb1-deficient mice but decreases it in the Satb1-null mice. At the same time, the Satb2 deletion decreases Ca2+-signals and the sensitivity of the KA receptor to the agonist in neurons from the Satb1-null and the Satb1-deficient mice. The Satb1 deletion affects the development of the inhibitory system of neurotransmission resulting in the suppression of the neuron maturation process and switching the GABAergic responses from excitatory to inhibitory, while the Satb2 deletion has a similar effect only in the Satb1-null mice. We show that the Satb1 and Satb2 transcription factors are involved in the regulation of the transmission of excitatory signals and inhibition of the neuronal network in the cortical cell culture.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Amber R Paulson ◽  
Maureen O’Callaghan ◽  
Xue-Xian Zhang ◽  
Paul B Rainey ◽  
Mark R H Hurst

Abstract The function of microbes can be inferred from knowledge of genes specifically expressed in natural environments. Here, we report the in vivo transcriptome of the entomopathogenic bacterium Yersinia entomophaga MH96, captured during initial, septicemic, and pre-cadaveric stages of intrahemocoelic infection in Galleria mellonella. A total of 1285 genes were significantly upregulated by MH96 during infection; 829 genes responded to in vivo conditions during at least one stage of infection, 289 responded during two stages of infection, and 167 transcripts responded throughout all three stages of infection compared to in vitro conditions at equivalent cell densities. Genes upregulated during the earliest infection stage included components of the insecticidal toxin complex Yen-TC (chi1, chi2, and yenC1), genes for rearrangement hotspot element containing protein yenC3, cytolethal distending toxin cdtAB, and vegetative insecticidal toxin vip2. Genes more highly expressed throughout the infection cycle included the putative heat-stable enterotoxin yenT and three adhesins (usher-chaperone fimbria, filamentous hemagglutinin, and an AidA-like secreted adhesin). Clustering and functional enrichment of gene expression data also revealed expression of genes encoding type III and VI secretion system-associated effectors. Together these data provide insight into the pathobiology of MH96 and serve as an important resource supporting efforts to identify novel insecticidal agents.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
David L Paterson ◽  
Burcu Isler ◽  
Patrick N A Harris

Abstract Ceftriaxone resistance in the Enterobacterales is typically the result of production of ESBLs or AmpC β-lactamases. The genes encoding these enzymes are often co-located with other antibiotic resistance genes leading to resistance to aminoglycosides, quinolones and trimethoprim/sulfamethoxazole. Carbapenems are stable to ESBLs and AmpC giving them reliable in vitro activity against producers of these β-lactamases. In contrast, piperacillin/tazobactam and amoxicillin/clavulanate are compromised by co-production of OXA-1, which is not inhibited by tazobactam or clavulanate. These in vitro findings provide an explanation for the MERINO trial outcomes, where 3.7% (7/191) randomized to meropenem died compared with 12.3% (23/187) randomized to piperacillin/tazobactam as definitive treatment of bloodstream infection due to ceftriaxone-resistant organisms. No randomized trials have yet put cefepime and carbapenems head to head, but some observational studies have shown worse outcomes with cefepime. We argue that carbapenems are the antibiotics of choice for ceftriaxone-resistant Enterobacterales.


2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii348-iii348
Author(s):  
Tina Huang ◽  
Andrea Piunti ◽  
Elizabeth Bartom ◽  
Jin Qi ◽  
Rintaro Hashizume ◽  
...  

Abstract BACKGROUND Histone H3.3 mutation (H3F3A) occurs in 50% of cortical pediatric high-grade gliomas. This mutation replaces glycine 34 with arginine or valine (G34R/V), impairing SETD2 activity (H3K36-specific trimethyltransferase), resulting in reduced H3K36me on H3G34V nucleosomes relative to wild-type. This contributes to genomic instability and drives distinct gene expressions associated with tumorigenesis. However, it is not known if this differential H3K36me3 enrichment is due to H3G34V mutant protein alone. Therefore, we set to elucidate the effect of H3G34V on genomic H3K36me3 enrichment in vitro. METHODS Doxycycline-inducible short hairpin RNA (shRNA) against H3F3A was delivered via lentivirus to established H3G34V mutant pediatric glioma cell line KNS42, and H3G34V introduced into H3.3 wild type normal human astrocytes (NHA). Transfections were confirmed by western blot, fluorescent imaging, and flow cytometry, with resulting H3.3WT and H3K36me3 expression determined by western blot. H3.3WT, H3K36me3, and H3G34V ChIP-Seq was performed to evaluate genomic enrichment. RESULTS Complete knockdown of H3G34V was achieved with DOX-induced shRNA, with no change in total H3.3, suggesting disproportionate allelic frequency of genes encoding H3.3 (H3F3A and H3F3B). Modest increase in H3K36me3 occurred after H3F3A-knockdown from KNS42, suggesting H3G34V alone impacts observed H3K36me3 levels. Distinct H3K36me3 genomic enrichment was observed with H3G34V knock-in. CONCLUSIONS We demonstrate that DOX-inducible knockdown of H3F3A in an H3G34V mutant pediatric glioma cells and H3G34V mutation transduction in wild-type astrocytes affects H3K36me3 expression. Further evaluation by ChIP-Seq analysis for restoration of wild-type genomic H3K36me3 enrichment patterns with H3G34V knockdown, and mutant H3K36me3 patterns with H3G34V transduction, is currently underway.


Sign in / Sign up

Export Citation Format

Share Document