Comparison of germline mosaics of genes in the Polycomb group of Drosophila melanogaster.

Genetics ◽  
1995 ◽  
Vol 140 (1) ◽  
pp. 231-243 ◽  
Author(s):  
M C Soto ◽  
T B Chou ◽  
W Bender

Abstract The genes of the Polycomb group (PcG) repress the genes of the bithorax and Antennapedia complexes, among others. To observe a null phenotype for a PcG gene, one must remove its maternal as well as zygotic contribution to the embryo. Five members of the PcG group are compared here: Enhancer of Polycomb [E(Pc)], Additional sex combs (Asx), Posterior sex combs (Psc), Suppressor of zeste 2 [Su (z) 2] and Polycomblike (Pcl). The yeast recombinase (FLP) system was used to induce mitotic recombination in the maternal germline. Mutant embryos were analyzed by staining with antibodies against six target genes of the PcG. The loss of the maternal component leads to enhanced homeotic phenotypes and to unique patterns of misexpression. E(Pc) and Su(z) 2 mutations had only subtle effects on the target genes, even when the maternal contributions were removed. Asx and Pcl mutants show derepression of the targets only in specific cell types. Psc shows unusual effects on two of the targets, Ultrabithorax and abdominal-A. These results show that the PcG genes do not act only in a common complex or pathway; they must have some independent functions.

Development ◽  
1998 ◽  
Vol 125 (7) ◽  
pp. 1207-1216 ◽  
Author(s):  
D.A. Sinclair ◽  
T.A. Milne ◽  
J.W. Hodgson ◽  
J. Shellard ◽  
C.A. Salinas ◽  
...  

The Additional sex combs (Asx) gene of Drosophila is a member of the Polycomb group of genes, which are required for maintenance of stable repression of homeotic and other loci. Asx is unusual among the Polycomb group because: (1) one Asx allele exhibits both anterior and posterior transformations; (2) Asx mutations enhance anterior transformations of trx mutations; (3) Asx mutations exhibit segmentation phenotypes in addition to homeotic phenotypes; (4) Asx is an Enhancer of position-effect variegation and (5) Asx displays tissue-specific derepression of target genes. Asx was cloned by transposon tagging and encodes a protein of 1668 amino acids containing an unusual cysteine cluster at the carboxy terminus. The protein is ubiquitously expressed during development. We show that Asx is required in the central nervous system to regulate Ultrabithorax. ASX binds to multiple sites on polytene chromosomes, 70% of which overlap those of Polycomb, polyhomeotic and Polycomblike, and 30% of which are unique. The differences in target site recognition may account for some of the differences in Asx phenotypes relative to other members of the Polycomb group.


Genetics ◽  
1992 ◽  
Vol 130 (4) ◽  
pp. 817-825 ◽  
Author(s):  
D A Sinclair ◽  
R B Campbell ◽  
F Nicholls ◽  
E Slade ◽  
H W Brock

Abstract Additional sex combs (Asx) is a member of the Polycomb group of genes, which are thought to be required for maintenance of chromatin structure. To better understand the function of Asx, we have isolated nine new alleles, each of which acts like a gain of function mutation. Asx is required for normal determination of segment identity. AsxP1 shows an unusual phenotype in that anterior and posterior homeotic transformations are seen in the same individuals, suggesting that AsxP1 might upset chromatin structure in a way that makes both activation and repression of homeotic genes more difficult. Analysis of embryonic and adult phenotypes of Asx alleles suggests that Asx is required zygotically for determination of segment number and polarity. The expression pattern of even-skipped is altered in Asx mutant embryos, suggesting that Asx is required for normal expression of this gene. We have transposon-tagged the Asx gene, and can thus begin molecular analysis of its function.


Genetics ◽  
1998 ◽  
Vol 149 (4) ◽  
pp. 1823-1838 ◽  
Author(s):  
Olivier Saget ◽  
Françoise Forquignon ◽  
Pedro Santamaria ◽  
Neel B Randsholt

Abstract We have analyzed the requirements for the multi sex combs (mxc) gene during development to gain further insight into the mechanisms and developmental processes that depend on the important trans-regulators forming the Polycomb group (PcG) in Drosophila melanogaster. mxc is allelic with the tumor suppressor locus lethal (1) malignant blood neoplasm (l(1)mbn). We show that the mxc product is dramatically needed in most tissues because its loss leads to cell death after a few divisions. mxc has also a strong maternal effect. We find that hypomorphic mxc mutations enhance other PcG gene mutant phenotypes and cause ectopic expression of homeotic genes, confirming that PcG products are cooperatively involved in repression of selector genes outside their normal expression domains. We also demonstrate that the mxc product is needed for imaginal head specification, through regulation of the ANT-C gene Deformed. Our analysis reveals that mxc is involved in the maternal control of early zygotic gap gene expression previously reported for some PcG genes and suggests that the mechanism of this early PcG function could be different from the PcG-mediated regulation of homeotic selector genes later in development. We discuss these data in view of the numerous functions of PcG genes during development.


2004 ◽  
Vol 24 (6) ◽  
pp. 2546-2559 ◽  
Author(s):  
Joshua P. Frederick ◽  
Nicole T. Liberati ◽  
David S. Waddell ◽  
Yigong Shi ◽  
Xiao-Fan Wang

ABSTRACT Smad proteins are the most well-characterized intracellular effectors of the transforming growth factor β (TGF-β) signal. The ability of the Smads to act as transcriptional activators via TGF-β-induced recruitment to Smad binding elements (SBE) within the promoters of TGF-β target genes has been firmly established. However, the elucidation of the molecular mechanisms involved in TGF-β-mediated transcriptional repression are only recently being uncovered. The proto-oncogene c-myc is repressed by TGF-β, and this repression is required for the manifestation of the TGF-β cytostatic program in specific cell types. We have shown that Smad3 is required for both TGF-β-induced repression of c-myc and subsequent growth arrest in keratinocytes. The transcriptional repression of c-myc is dependent on direct Smad3 binding to a novel Smad binding site, termed a repressive Smad binding element (RSBE), within the TGF-β inhibitory element (TIE) of the c-myc promoter. The c-myc TIE is a composite element, comprised of an overlapping RSBE and a consensus E2F site, that is capable of binding at least Smad3, Smad4, E2F-4, and p107. The RSBE is distinct from the previously defined SBE and may partially dictate, in conjunction with the promoter context of the overlapping E2F site, whether the Smad3-containing complex actively represses, as opposed to transactivates, the c-myc promoter.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1424-1424
Author(s):  
Bjoern Schneider ◽  
Stefan Nagel ◽  
Maren Kaufmann ◽  
Hilmar Quentmeier ◽  
Yoshinobu Matsuo ◽  
...  

Abstract Genomic amplifications of the 11q23 region occur in acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) where MLL and a few neighboring genes, notably DDX6, are deemed salient targets. However, the extent to which amp(lified)-MLL and translocated MLL share effector targets remains to be established. Even less is known about the target(s) of deletions affecting the long arm of chromosome 5 (5q-) which reportedly partner amp-MLL. We analyzed three AML/MDS cell lines by cytogenetics (conventional and FISH) in parallel with real time q(uantitative)-PCR at both 11q23 and 5q2 to measure copy number and expression of salient target genes together with putative downstream targets. The cell lines comprised: MOLM-17 (transforming-MDS), SAML-2 (therapy-related AML), and UOC-M1 (AML-M1). All three cell lines exhibited approximately four-fold genomic amplification of 11q23 including MLL and DDX6, while the amplicon extended telomerically to include FLI1 (11q24) and HNT (11q25) in MOLM-17 and UOC-M1 only. Expression, quantified relative to AML/MDS cell lines without MLL rearrangement, revealed that of the genomically amplified genes only MLL was generally overexpressed, namely by 9.5x (MOLM-17), 5.1x (UOC-M1), and 4.6x (SAML-2). In addition to the highest MLL expression, in MOLM-17 FLI1 (3.8x) and DDX6 (2.8x) were significantly upregulated. Expression was also quantified among reputed MLL target genes, and showed that in the three cell lines MEIS1 was upregulated in MOLM-17 only (by 6x), and CDKN2C in all cell lines (by about 2x), while HOXA9 and CDKN1B showed near-normal levels of expression. All three cell lines carried 5q- with a common deleted region at 5q31 extending from 134.2–137.5 Mbp. Of a panel of genes recently identified as 5q- deletion targets (centromere-TIGA1, CAMLG, C5orf15, C5orf14, BRD8, HARS, KIAA0141, CSNK1A1, RBM22-telomere), only C5orf15 (function unknown) and BRD8 (a component of the nua4 histone acetyltransferase complex involved in transcriptional activation) were generally downregulated - to about 0.25x, and about 0.4x normalized expression levels, respectively. Both genes lie within the common deleted region. In summary, we have characterized amp-MLL and 5q- in MOLM-17, the first MDS cell line to be described with these rearrangements, together with two AML cell lines with similar cytogenetic profiles. Our data suggest that MLL is the only clear object of 11q23 amplification hitherto identified and CDKN2C its sole unequivocal target in AML/MDS cell lines. It is possible that MEIS1 is also targeted for activation in specific cell types or disease phases in MDS. These findings also highlight C5orf15 and/or BRD8 as possible leukemogenic accomplices targeted for downregulation in accompanying 5q-. These findings may point to differences in signalling pathways targeted by amp-MLL in AML and MDS.


Genetics ◽  
1996 ◽  
Vol 143 (2) ◽  
pp. 887-896 ◽  
Author(s):  
Jan Larsson ◽  
Jingpu Zhang ◽  
Åsa Rasmuson-Lestander

Abstract In Drosophila melanogaster, the study of trans-acting modifier mutations of position-effect variegation and Polycomb group (Pc-G) genes have been useful tools to investigate genes involved in chromatin structure. We have cloned a modifier gene, Suppesssm of zeste 5 (Su(z)5), which encodes Sadenosylmethionine synthetase, and we present here molecular results and data concerning its expression in mutants and genetic interactions. The mutant alleles Su(z)5, l(2)R23 and l(2)M6 show suppression of wm4 and also of two white mutants induced by roo element insertions in the regulatory region i.e., wis (in combination with z  1) and wsp1. Two of the Su(z)S alleles, as well as a deletion of the gene, also act as enhancers of PoZycomb by increasing the size of sex combs on midleg. The results suggest that Su(z)5 is connected with regulation of chromatin structure. The enzyme Sadenosylmethionine synthetase is involved in the synthesis of Sadenosylmethionine, a methyl group donor and also, after decarboxylation, a propylamino group donor in the bio-synthesis of polyamines. Our results from HPLC analysis show that in ovaries from heterozygous Su(z)5 mutants the content of spermine is significantly reduced. Results presented here suggest that polyamines are an important molecule class in the regulation of chromatin structure.


Genetics ◽  
2021 ◽  
Author(s):  
Juan Jauregui-Lozano ◽  
Kimaya Bakhle ◽  
Vikki M Weake

Abstract The chromatin landscape defines cellular identity in multicellular organisms with unique patterns of DNA accessibility and histone marks decorating the genome of each cell type. Thus, profiling the chromatin state of different cell types in an intact organism under disease or physiological conditions can provide insight into how chromatin regulates cell homeostasis in vivo. To overcome the many challenges associated with characterizing chromatin state in specific cell types, we developed an improved approach to isolate Drosophila melanogaster nuclei tagged with a GFPKASH protein. The perinuclear space-localized KASH domain anchors GFP to the outer nuclear membrane, and expression of UAS-GFPKASH can be controlled by tissue-specific Gal4 drivers. Using this protocol, we profiled chromatin accessibility using an improved version of Assay for Transposable Accessible Chromatin followed by sequencing (ATAC-seq), called Omni-ATAC. In addition, we examined the distribution of histone marks using Chromatin immunoprecipitation followed by sequencing (ChIP-seq) and Cleavage Under Targets and Tagmentation (CUT&Tag) in adult photoreceptor neurons. We show that the chromatin landscape of photoreceptors reflects the transcriptional state of these cells, demonstrating the quality and reproducibility of our approach for profiling the transcriptome and epigenome of specific cell types in Drosophila.


Author(s):  
Susanne Voigt ◽  
Luise Kost

Asbstract Environmental temperature can affect chromatin-based gene regulation, in particular in ectotherms such as insects. Genes regulated by the Polycomb group (PcG) vary in their transcriptional output in response to changes in temperature. Expression of PcG-regulated genes typically increases with decreasing temperatures. Here we examined variations in temperature-sensitive expression of PcG target genes in natural populations from different climates of Drosophila melanogaster, and differences thereof across different fly stages and tissues. Temperature-induced expression plasticity was found to be stage- and sex-specific with differences in the specificity between the examined PcG target genes. Some tissues and stages, however, showed a higher number of PcG target genes with temperature-sensitive expression than others. Overall, we found higher levels of temperature-induced expression plasticity in African tropical flies from the ancestral species range than in flies from temperate Europe. We also observed differences between temperate flies, however, with more reduction of expression plasticity in warm-temperate than in cold-temperate populations. Although, in general, temperature sensitive expression appeared to be detrimental in temperate climates, there were also cases in which plasticity was increased in temperate flies, as well as no changes in expression plasticity between flies from different climates.


BMC Genetics ◽  
2020 ◽  
Vol 21 (S1) ◽  
Author(s):  
Anna A. Ogienko ◽  
Evgeniya N. Andreyeva ◽  
Evgeniya S. Omelina ◽  
Anastasiya L. Oshchepkova ◽  
Alexey V. Pindyurin

Abstract Background The Drosophila central nervous system (CNS) is a convenient model system for the study of the molecular mechanisms of conserved neurobiological processes. The manipulation of gene activity in specific cell types and subtypes of the Drosophila CNS is frequently achieved by employing the binary Gal4/UAS system. However, many Gal4 driver lines available from the Bloomington Drosophila Stock Center (BDSC) and commonly used in Drosophila neurobiology are still not well characterized. Among these are three lines with Gal4 driven by the elav promoter (BDSC #8760, #8765, and #458), one line with Gal4 driven by the repo promoter (BDSC #7415), and the 69B-Gal4 line (BDSC #1774). For most of these lines, the exact insertion sites of the transgenes and the detailed expression patterns of Gal4 are not known. This study is aimed at filling these gaps. Results We have mapped the genomic location of the Gal4-bearing P-elements carried by the BDSC lines #8760, #8765, #458, #7415, and #1774. In addition, for each of these lines, we have analyzed the Gal4-driven GFP expression pattern in the third instar larval CNS and eye-antennal imaginal discs. Localizations of the endogenous Elav and Repo proteins were used as markers of neuronal and glial cells, respectively. Conclusions We provide a mini-atlas of the spatial activity of Gal4 drivers that are widely used for the expression of UAS–target genes in the Drosophila CNS. The data will be helpful for planning experiments with these drivers and for the correct interpretation of the results.


1998 ◽  
Vol 141 (2) ◽  
pp. 469-481 ◽  
Author(s):  
Peter Buchenau ◽  
Jacob Hodgson ◽  
Helen Strutt ◽  
Donna J. Arndt-Jovin

The subcellular three-dimensional distribution of three polycomb-group (PcG) proteins—polycomb, polyhomeotic and posterior sex combs—in fixed whole-mount Drosophila embryos was analyzed by multicolor confocal fluorescence microscopy. All three proteins are localized in complex patterns of 100 or more loci throughout most of the interphase nuclear volume. The rather narrow distribution of the protein intensities in the vast majority of loci argues against a PcG-mediated sequestration of repressed target genes by aggregation into subnuclear domains. In contrast to the case for PEV repression (Csink, A.K., and S. Henikoff. 1996. Nature. 381:529–531), there is a lack of correlation between the occurrence of PcG proteins and high concentrations of DNA, demonstrating that the silenced genes are not targeted to heterochromatic regions within the nucleus. There is a clear distinction between sites of transcription in the nucleus and sites of PcG binding, supporting the assumption that most PcG binding loci are sites of repressive complexes. Although the PcG proteins maintain tissue-specific repression for up to 14 cell generations, the proteins studied here visibly dissociate from the chromatin during mitosis, and disperse into the cytoplasm in a differential manner. Quantitation of the fluorescence intensities in the whole mount embryos demonstrate that the dissociated proteins are present in the cytoplasm. We determined that <2% of PH remains attached to late metaphase and anaphase chromosomes. Each of the three proteins that were studied has a different rate and extent of dissociation at prophase and reassociation at telophase. These observations have important implications for models of the mechanism and maintenance of PcG- mediated gene repression.


Sign in / Sign up

Export Citation Format

Share Document