scholarly journals Molecular and cytological analysis of widely-used Gal4 driver lines for Drosophila neurobiology

BMC Genetics ◽  
2020 ◽  
Vol 21 (S1) ◽  
Author(s):  
Anna A. Ogienko ◽  
Evgeniya N. Andreyeva ◽  
Evgeniya S. Omelina ◽  
Anastasiya L. Oshchepkova ◽  
Alexey V. Pindyurin

Abstract Background The Drosophila central nervous system (CNS) is a convenient model system for the study of the molecular mechanisms of conserved neurobiological processes. The manipulation of gene activity in specific cell types and subtypes of the Drosophila CNS is frequently achieved by employing the binary Gal4/UAS system. However, many Gal4 driver lines available from the Bloomington Drosophila Stock Center (BDSC) and commonly used in Drosophila neurobiology are still not well characterized. Among these are three lines with Gal4 driven by the elav promoter (BDSC #8760, #8765, and #458), one line with Gal4 driven by the repo promoter (BDSC #7415), and the 69B-Gal4 line (BDSC #1774). For most of these lines, the exact insertion sites of the transgenes and the detailed expression patterns of Gal4 are not known. This study is aimed at filling these gaps. Results We have mapped the genomic location of the Gal4-bearing P-elements carried by the BDSC lines #8760, #8765, #458, #7415, and #1774. In addition, for each of these lines, we have analyzed the Gal4-driven GFP expression pattern in the third instar larval CNS and eye-antennal imaginal discs. Localizations of the endogenous Elav and Repo proteins were used as markers of neuronal and glial cells, respectively. Conclusions We provide a mini-atlas of the spatial activity of Gal4 drivers that are widely used for the expression of UAS–target genes in the Drosophila CNS. The data will be helpful for planning experiments with these drivers and for the correct interpretation of the results.

2004 ◽  
Vol 24 (6) ◽  
pp. 2546-2559 ◽  
Author(s):  
Joshua P. Frederick ◽  
Nicole T. Liberati ◽  
David S. Waddell ◽  
Yigong Shi ◽  
Xiao-Fan Wang

ABSTRACT Smad proteins are the most well-characterized intracellular effectors of the transforming growth factor β (TGF-β) signal. The ability of the Smads to act as transcriptional activators via TGF-β-induced recruitment to Smad binding elements (SBE) within the promoters of TGF-β target genes has been firmly established. However, the elucidation of the molecular mechanisms involved in TGF-β-mediated transcriptional repression are only recently being uncovered. The proto-oncogene c-myc is repressed by TGF-β, and this repression is required for the manifestation of the TGF-β cytostatic program in specific cell types. We have shown that Smad3 is required for both TGF-β-induced repression of c-myc and subsequent growth arrest in keratinocytes. The transcriptional repression of c-myc is dependent on direct Smad3 binding to a novel Smad binding site, termed a repressive Smad binding element (RSBE), within the TGF-β inhibitory element (TIE) of the c-myc promoter. The c-myc TIE is a composite element, comprised of an overlapping RSBE and a consensus E2F site, that is capable of binding at least Smad3, Smad4, E2F-4, and p107. The RSBE is distinct from the previously defined SBE and may partially dictate, in conjunction with the promoter context of the overlapping E2F site, whether the Smad3-containing complex actively represses, as opposed to transactivates, the c-myc promoter.


2017 ◽  
Author(s):  
Laszlo Tirian ◽  
Barry J. Dickson

AbstractIn studying the cellular interactions within complex tissues, it is extremely valuable to be able to reproducibly and flexibly target transgene expression to restricted subsets of cells. This approach is particularly valuable in studying the nervous system, with its bewildering diversity of neuronal cell types. We report here the generation of over 18,000 driver lines (the VT collection) that exploit the GAL4, LexA, and split-GAL4 systems to express transgenes in distinct and highly specific cell types in Drosophila. We document the expression patterns of over 14,000 of these lines in the adult male brain.


Author(s):  
Hee-Dae Kim ◽  
Jing Wei ◽  
Tanessa Call ◽  
Nicole Teru Quintus ◽  
Alexander J. Summers ◽  
...  

AbstractDepression is the leading cause of disability and produces enormous health and economic burdens. Current treatment approaches for depression are largely ineffective and leave more than 50% of patients symptomatic, mainly because of non-selective and broad action of antidepressants. Thus, there is an urgent need to design and develop novel therapeutics to treat depression. Given the heterogeneity and complexity of the brain, identification of molecular mechanisms within specific cell-types responsible for producing depression-like behaviors will advance development of therapies. In the reward circuitry, the nucleus accumbens (NAc) is a key brain region of depression pathophysiology, possibly based on differential activity of D1- or D2- medium spiny neurons (MSNs). Here we report a circuit- and cell-type specific molecular target for depression, Shisa6, recently defined as an AMPAR component, which is increased only in D1-MSNs in the NAc of susceptible mice. Using the Ribotag approach, we dissected the transcriptional profile of D1- and D2-MSNs by RNA sequencing following a mouse model of depression, chronic social defeat stress (CSDS). Bioinformatic analyses identified cell-type specific genes that may contribute to the pathogenesis of depression, including Shisa6. We found selective optogenetic activation of the ventral tegmental area (VTA) to NAc circuit increases Shisa6 expression in D1-MSNs. Shisa6 is specifically located in excitatory synapses of D1-MSNs and increases excitability of neurons, which promotes anxiety- and depression-like behaviors in mice. Cell-type and circuit-specific action of Shisa6, which directly modulates excitatory synapses that convey aversive information, identifies the protein as a potential rapid-antidepressant target for aberrant circuit function in depression.


2022 ◽  
Vol 12 ◽  
Author(s):  
Jiazi Zhang ◽  
Hongchun Xiong ◽  
Huijun Guo ◽  
Yuting Li ◽  
Xiaomei Xie ◽  
...  

The wheat AP2 family gene Q controls domestication traits, including spike morphology and threshability, which are critical for the widespread cultivation and yield improvement of wheat. Although many studies have investigated the molecular mechanisms of the Q gene, its direct target genes, especially those controlling spike morphology, are not clear, and its regulatory pathways are not well established. In this study, we conducted gene mapping of a wheat speltoid spike mutant and found that a new allele of the Q gene with protein truncation played a role in spike morphology variation in the mutant. Dynamic expression levels of the Q gene throughout the spike development process suggested that the transcript abundances of the mutant were decreased at the W6 and W7 scales compared to those of the WT. We identified several mutation sites on the Q gene and showed that mutations in different domains resulted in distinct phenotypes. In addition, we found that the Q gene produced three transcripts via alternative splicing and that they exhibited differential expression patterns in nodes, internodes, flag leaves, and spikes. Finally, we identified several target genes directly downstream of Q, including TaGRF1-2D and TaMGD-6B, and proposed a possible regulatory network. This study uncovered the target genes of Q, and the results can help to clarify the mechanism of wheat spike morphology and thereby improve wheat grain yield.


Genetics ◽  
1995 ◽  
Vol 140 (1) ◽  
pp. 231-243 ◽  
Author(s):  
M C Soto ◽  
T B Chou ◽  
W Bender

Abstract The genes of the Polycomb group (PcG) repress the genes of the bithorax and Antennapedia complexes, among others. To observe a null phenotype for a PcG gene, one must remove its maternal as well as zygotic contribution to the embryo. Five members of the PcG group are compared here: Enhancer of Polycomb [E(Pc)], Additional sex combs (Asx), Posterior sex combs (Psc), Suppressor of zeste 2 [Su (z) 2] and Polycomblike (Pcl). The yeast recombinase (FLP) system was used to induce mitotic recombination in the maternal germline. Mutant embryos were analyzed by staining with antibodies against six target genes of the PcG. The loss of the maternal component leads to enhanced homeotic phenotypes and to unique patterns of misexpression. E(Pc) and Su(z) 2 mutations had only subtle effects on the target genes, even when the maternal contributions were removed. Asx and Pcl mutants show derepression of the targets only in specific cell types. Psc shows unusual effects on two of the targets, Ultrabithorax and abdominal-A. These results show that the PcG genes do not act only in a common complex or pathway; they must have some independent functions.


Author(s):  
Perotti M F ◽  
Arce A L ◽  
R L Chan

Abstract Roots are the anchorage organs of plants, responsible for water and nutrient uptake, exhibiting high plasticity. Root architecture is driven by the interactions of biomolecules, including transcription factors (TFs) and hormones that are crucial players regulating root plasticity. Multiple TF families are involved in root development; some, such as ARFs and LBDs, have been well characterized, whereas others remain less investigated. In this review, we synthesize the current knowledge about the involvement of the large family of homeodomain-leucine zipper (HD-Zip) TFs in root development. This family is divided into four subfamilies (I to IV), mainly according to structural features, such as additional motifs aside from HD-Zip, as well as their size, gene structure, and expression patterns. We explored and analyzed public databases and the scientific literature regarding HD-Zip TFs in Arabidopsis and other species. Most members of the four HD-Zip subfamilies are expressed in specific cell types and several ones from each group have assigned functions in root development. Notably, a high proportion of the studied proteins are part of intricate regulation pathways involved in primary and lateral root growth and development.


2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Reagon Karki ◽  
Alpha Tom Kodamullil ◽  
Charles Tapley Hoyt ◽  
Martin Hofmann-Apitius

Abstract Background Literature derived knowledge assemblies have been used as an effective way of representing biological phenomenon and understanding disease etiology in systems biology. These include canonical pathway databases such as KEGG, Reactome and WikiPathways and disease specific network inventories such as causal biological networks database, PD map and NeuroMMSig. The represented knowledge in these resources delineates qualitative information focusing mainly on the causal relationships between biological entities. Genes, the major constituents of knowledge representations, tend to express differentially in different conditions such as cell types, brain regions and disease stages. A classical approach of interpreting a knowledge assembly is to explore gene expression patterns of the individual genes. However, an approach that enables quantification of the overall impact of differentially expressed genes in the corresponding network is still lacking. Results Using the concept of heat diffusion, we have devised an algorithm that is able to calculate the magnitude of regulation of a biological network using expression datasets. We have demonstrated that molecular mechanisms specific to Alzheimer (AD) and Parkinson Disease (PD) regulate with different intensities across spatial and temporal resolutions. Our approach depicts that the mitochondrial dysfunction in PD is severe in cortex and advanced stages of PD patients. Similarly, we have shown that the intensity of aggregation of neurofibrillary tangles (NFTs) in AD increases as the disease progresses. This finding is in concordance with previous studies that explain the burden of NFTs in stages of AD. Conclusions This study is one of the first attempts that enable quantification of mechanisms represented as biological networks. We have been able to quantify the magnitude of regulation of a biological network and illustrate that the magnitudes are different across spatial and temporal resolution.


2020 ◽  
Vol 21 (23) ◽  
pp. 9052
Author(s):  
Indrek Teino ◽  
Antti Matvere ◽  
Martin Pook ◽  
Inge Varik ◽  
Laura Pajusaar ◽  
...  

Aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor, which mediates the effects of a variety of environmental stimuli in multiple tissues. Recent advances in AHR biology have underlined its importance in cells with high developmental potency, including pluripotent stem cells. Nonetheless, there is little data on AHR expression and its role during the initial stages of stem cell differentiation. The purpose of this study was to investigate the temporal pattern of AHR expression during directed differentiation of human embryonic stem cells (hESC) into neural progenitor, early mesoderm and definitive endoderm cells. Additionally, we investigated the effect of the AHR agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on the gene expression profile in hESCs and differentiated cells by RNA-seq, accompanied by identification of AHR binding sites by ChIP-seq and epigenetic landscape analysis by ATAC-seq. We showed that AHR is differentially regulated in distinct lineages. We provided evidence that TCDD alters gene expression patterns in hESCs and during early differentiation. Additionally, we identified novel potential AHR target genes, which expand our understanding on the role of this protein in different cell types.


2020 ◽  
Vol 10 (11) ◽  
pp. 4147-4158
Author(s):  
Lesley N. Weaver ◽  
Tianlu Ma ◽  
Daniela Drummond-Barbosa

Precise genetic manipulation of specific cell types or tissues to pinpoint gene function requirement is a critical step in studies aimed at unraveling the intricacies of organismal physiology. Drosophila researchers heavily rely on the UAS/Gal4/Gal80 system for tissue-specific manipulations; however, it is often unclear whether the reported Gal4 expression patterns are indeed specific to the tissue of interest such that experimental results are not confounded by secondary sites of Gal4 expression. Here, we surveyed the expression patterns of commonly used Gal4 drivers in adult Drosophila female tissues under optimal conditions and found that multiple drivers have unreported secondary sites of expression beyond their published cell type/tissue expression pattern. These results underscore the importance of thoroughly characterizing Gal4 tools as part of a rigorous experimental design that avoids potential misinterpretation of results as we strive for understanding how the function of a specific gene/pathway in one tissue contributes to whole-body physiology.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1424-1424
Author(s):  
Bjoern Schneider ◽  
Stefan Nagel ◽  
Maren Kaufmann ◽  
Hilmar Quentmeier ◽  
Yoshinobu Matsuo ◽  
...  

Abstract Genomic amplifications of the 11q23 region occur in acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) where MLL and a few neighboring genes, notably DDX6, are deemed salient targets. However, the extent to which amp(lified)-MLL and translocated MLL share effector targets remains to be established. Even less is known about the target(s) of deletions affecting the long arm of chromosome 5 (5q-) which reportedly partner amp-MLL. We analyzed three AML/MDS cell lines by cytogenetics (conventional and FISH) in parallel with real time q(uantitative)-PCR at both 11q23 and 5q2 to measure copy number and expression of salient target genes together with putative downstream targets. The cell lines comprised: MOLM-17 (transforming-MDS), SAML-2 (therapy-related AML), and UOC-M1 (AML-M1). All three cell lines exhibited approximately four-fold genomic amplification of 11q23 including MLL and DDX6, while the amplicon extended telomerically to include FLI1 (11q24) and HNT (11q25) in MOLM-17 and UOC-M1 only. Expression, quantified relative to AML/MDS cell lines without MLL rearrangement, revealed that of the genomically amplified genes only MLL was generally overexpressed, namely by 9.5x (MOLM-17), 5.1x (UOC-M1), and 4.6x (SAML-2). In addition to the highest MLL expression, in MOLM-17 FLI1 (3.8x) and DDX6 (2.8x) were significantly upregulated. Expression was also quantified among reputed MLL target genes, and showed that in the three cell lines MEIS1 was upregulated in MOLM-17 only (by 6x), and CDKN2C in all cell lines (by about 2x), while HOXA9 and CDKN1B showed near-normal levels of expression. All three cell lines carried 5q- with a common deleted region at 5q31 extending from 134.2–137.5 Mbp. Of a panel of genes recently identified as 5q- deletion targets (centromere-TIGA1, CAMLG, C5orf15, C5orf14, BRD8, HARS, KIAA0141, CSNK1A1, RBM22-telomere), only C5orf15 (function unknown) and BRD8 (a component of the nua4 histone acetyltransferase complex involved in transcriptional activation) were generally downregulated - to about 0.25x, and about 0.4x normalized expression levels, respectively. Both genes lie within the common deleted region. In summary, we have characterized amp-MLL and 5q- in MOLM-17, the first MDS cell line to be described with these rearrangements, together with two AML cell lines with similar cytogenetic profiles. Our data suggest that MLL is the only clear object of 11q23 amplification hitherto identified and CDKN2C its sole unequivocal target in AML/MDS cell lines. It is possible that MEIS1 is also targeted for activation in specific cell types or disease phases in MDS. These findings also highlight C5orf15 and/or BRD8 as possible leukemogenic accomplices targeted for downregulation in accompanying 5q-. These findings may point to differences in signalling pathways targeted by amp-MLL in AML and MDS.


Sign in / Sign up

Export Citation Format

Share Document