scholarly journals Control of Amino Acid Permease Sorting in the Late Secretory Pathway of Saccharomyces cerevisiae by SEC13, LST4, LST7 and LST78

Genetics ◽  
1997 ◽  
Vol 147 (4) ◽  
pp. 1569-1584 ◽  
Author(s):  
Kevin J Roberg ◽  
Stephen Bickel ◽  
Neil Rowley ◽  
Chris A Kaiser

Abstract The SEC13 gene was originally identified by temperature-sensitive mutations that block all protein transport from the ER to the Golgi. We have found that at a permissive temperature for growth, the sec13-1 mutation selectively blocks transport of the nitrogen-regulated amino acid permease, Gaplp, from the Golgi to the plasma membrane, but does not affect the activity of constitutive permeases such as Hip1p, Can1p, or Lyp1p. Different alleles of SEC13 exhibit different relative effects on protein transport from the ER to the Golgi, or on Gap1p activity, indicating distinct requirements for SEC13 function at two different steps in the secretory pathway. Three new genes, LST4, LST7, and LSTB, were identified that are also required for amino acid permease transport from the Golgi to the cell surface. Mutations in LST4 and LST7 reduce the activity of the nitrogen-regulated permeases Gap1p and Put4p, whereas mutations in LST8 impair the activities of a broader set of amino acid permeases. The LST8 gene encodes a protein composed of WD-repeats and has a close human homologue. The LST7 gene encodes a novel protein. Together, these data indicate that SEC13, LST4, LST7, and LST8 function in the regulated delivery of Gap1p to the cell surface, perhaps as components of a post-Golgi secretory-vesicle coat.

1994 ◽  
Vol 14 (10) ◽  
pp. 6597-6606 ◽  
Author(s):  
A Schmidt ◽  
M N Hall ◽  
A Koller

The macrocyclic lactone FK506 exerts immunosuppressive effects on T lymphocytes by interfering with signal transduction leading to T-cell activation and also inhibits the growth of eukaryotic microorganisms, including Saccharomyces cerevisiae. We reported previously that an FK506-sensitive target in S. cerevisiae is required for amino acid import and that overexpression of two new genes, TAT1 and TAT2 (formerly called TAP1 and TAP2), confers resistance to the drug. Here we report that TAT1 and TAT2 encode novel members of the yeast amino acid permease family composed of integral membrane proteins that share 30 to 40% identity. TAT1 is the tyrosine high-affinity transporter, which also mediates low-affinity or low-capacity uptake of tryptophan. TAT2 is the tryptophan high-affinity transporter. FK506 does not reduce the levels of TAT1 and TAT2 transcripts, indicating that the inhibition of amino acid transport by the drug is posttranscriptional.


1999 ◽  
Vol 10 (11) ◽  
pp. 3549-3565 ◽  
Author(s):  
C. Fredrik Gilstring ◽  
Monika Melin-Larsson ◽  
Per O. Ljungdahl

The SHR3 gene of Saccharomyces cerevisiae encodes an integral membrane component of the endoplasmic reticulum (ER) with four membrane-spanning segments and a hydrophilic, cytoplasmically oriented carboxyl-terminal domain. Mutations in SHR3 specifically impede the transport of all 18 members of the amino acid permease (aap) gene family away from the ER. Shr3p does not itself exit the ER. Aaps fully integrate into the ER membrane and fold properly independently of Shr3p. Shr3p physically associates with the general aap Gap1p but not Sec61p, Gal2p, or Pma1p in a complex that can be purified fromN-dodecylmaltoside-solubilized membranes. Pulse–chase experiments indicate that the Shr3p–Gap1p association is transient, a reflection of the exit of Gap1p from the ER. The ER-derived vesicle COPII coatomer components Sec13p, Sec23p, Sec24p, and Sec31p but not Sar1p bind Shr3p via interactions with its carboxyl-terminal domain. The mutant shr3-23p, a nonfunctional membrane-associated protein, is unable to associate with aaps but retains the capacity to bind COPII components. The overexpression of either Shr3p or shr3-23p partially suppresses the temperature-sensitive sec12-1 allele. These results are consistent with a model in which Shr3p acts as a packaging chaperone that initiates ER-derived transport vesicle formation in the proximity of aaps by facilitating the membrane association and assembly of COPII coatomer components.


1999 ◽  
Vol 146 (6) ◽  
pp. 1227-1238 ◽  
Author(s):  
Thomas Beck ◽  
Anja Schmidt ◽  
Michael N. Hall

In Saccharomyces cerevisiae, amino acid permeases are divided into two classes. One class, represented by the general amino acid permease GAP1, contains permeases regulated in response to the nitrogen source. The other class, including the high affinity tryptophan permease, TAT2, consists of the so-called constitutive permeases. We show that TAT2 is regulated at the level of protein stability. In exponentially growing cells, TAT2 is in the plasma membrane and also accumulates in internal compartments of the secretory pathway. Upon nutrient deprivation or rapamycin treatment, TAT2 is transported to and degraded in the vacuole. The ubiquitination machinery and lysine residues within the NH2-terminal 31 amino acids of TAT2 mediate ubiquitination and degradation of the permease. Starvation-induced degradation of internal TAT2 is blocked in sec18, sec23, pep12, and vps27 mutants, but not in sec4, end4, and apg1 mutants, suggesting that, upon nutrient limitation, internal TAT2 is diverted from the late secretory pathway to the vacuolar pathway. Furthermore, our results suggest that TAT2 stability and sorting are controlled by the TOR signaling pathway, and regulated inversely to that of GAP1.


1994 ◽  
Vol 14 (10) ◽  
pp. 6597-6606
Author(s):  
A Schmidt ◽  
M N Hall ◽  
A Koller

The macrocyclic lactone FK506 exerts immunosuppressive effects on T lymphocytes by interfering with signal transduction leading to T-cell activation and also inhibits the growth of eukaryotic microorganisms, including Saccharomyces cerevisiae. We reported previously that an FK506-sensitive target in S. cerevisiae is required for amino acid import and that overexpression of two new genes, TAT1 and TAT2 (formerly called TAP1 and TAP2), confers resistance to the drug. Here we report that TAT1 and TAT2 encode novel members of the yeast amino acid permease family composed of integral membrane proteins that share 30 to 40% identity. TAT1 is the tyrosine high-affinity transporter, which also mediates low-affinity or low-capacity uptake of tryptophan. TAT2 is the tryptophan high-affinity transporter. FK506 does not reduce the levels of TAT1 and TAT2 transcripts, indicating that the inhibition of amino acid transport by the drug is posttranscriptional.


1987 ◽  
Vol 105 (4) ◽  
pp. 1587-1594 ◽  
Author(s):  
A P Newman ◽  
S Ferro-Novick

We have adapted a [3H]mannose suicide selection to identify mutations in additional genes which function in the early part of the yeast secretory pathway. Thus far this protocol has led to the identification of two new genes which are implicated in this process, as well as additional alleles of previously identified genes. The new mutants, bet1 and bet2, are temperature sensitive for growth and protein transport. Thin section analysis has revealed the accumulation of a network of endoplasmic reticulum (ER) at the restrictive temperature (37 degrees C). Precursors of exported proteins that accumulate in the cell at 37 degrees C are terminally core glycosylated. These observations suggest that the transport of precursors is blocked subsequent to translocation into the ER but before entry into the Golgi apparatus. The bet1 and bet2 mutants define two new complementation groups which have the same properties as previously identified ER-accumulating mutants. This and previous findings (Novick, P., C. Field, and R. Schekman, 1980, Cell, 21:205-215) suggest that protein exit from the ER and entry into the Golgi apparatus is a complex process requiring at least 11 genes.


1983 ◽  
Vol 96 (2) ◽  
pp. 541-547 ◽  
Author(s):  
P Novick ◽  
R Schekman

The transport of newly synthesized proteins to the yeast cell surface has been analyzed by a modification of the technique developed by Kaplan et al. (Kaplan, G., C. Unkeless, and Z.A. Cohn, 1979, Proc. Natl. Acad. Sci. USA, 76:3824-3828). Cells metabolically labeled with (35)SO(4)(2-) are treated with trinitrobenzenesulfonic acid (TNBS) at 0 degrees C under conditions where cell-surface proteins are tagged with trinitrophenol (TNP) but cytoplasmic proteins are not. After fractionation of cells into cell wall, membrane and cytoplasmic samples, and solubilization with SDS, the tagged proteins are immunoprecipitated with anti-TNP antibody and fixed staphylococcus aureus cells. Analysis of the precipitates by SDS gel electrophoresis and fluorography reveals four major protein species in the cell wall (S(1)-S(4)), seven species in the membrane fraction (M(1)-M(7)), and no tagged proteins in the cytoplasmic fraction. Temperature-sensitive mutants defective in secretion of invertase and acid phosphatase (sec mutants; Novick, P., C. Field, and R. Schekman, 1980, Cell, 21:204-215) are also defective in transport of the 11 major cell surface proteins at the nonpermissive temperature (37 degrees C). Export of accumulated proteins is restored in an energy- dependent fashion when secl cells are returned to a permissive temperature (24 degrees C). In wild-type cells the transit time for different surface proteins varies from less than 8 min to about 30 min. The asynchrony is developed at an early stage in the secretory pathway. All of the major cell wall proteins and many of the externally exposed plasma membrane proteins bind to concanavalin A. Inhibition of asparagine-linked glycosylation with tunicamycin does not prevent transport of several surface proteins.


2018 ◽  
Vol 293 (21) ◽  
pp. 8113-8127 ◽  
Author(s):  
Moustafa Sakr ◽  
Xiao-Yan Li ◽  
Farideh Sabeh ◽  
Tamar Y. Feinberg ◽  
John J. G. Tesmer ◽  
...  

Following ENU mutagenesis, a phenodeviant line was generated, termed the “Cartoon mouse,” that exhibits profound defects in growth and development. Cartoon mice harbor a single S466P point mutation in the MT1-MMP hemopexin domain, a 200-amino acid segment that is thought to play a critical role in regulating MT1-MMP collagenolytic activity. Herein, we demonstrate that the MT1-MMPS466P mutation replicates the phenotypic status of Mt1-mmp–null animals as well as the functional characteristics of MT1-MMP−/− cells. However, rather than a loss-of-function mutation acquired as a consequence of defects in MT1-MMP proteolytic activity, the S466P substitution generates a misfolded, temperature-sensitive mutant that is abnormally retained in the endoplasmic reticulum (ER). By contrast, the WT hemopexin domain does not play a required role in regulating MT1-MMP trafficking, as a hemopexin domain-deletion mutant is successfully mobilized to the cell surface and displays nearly normal collagenolytic activity. Alternatively, when MT1-MMPS466P–expressing cells are cultured at a permissive temperature of 25 °C that depresses misfolding, the mutant successfully traffics from the ER to the trans-Golgi network (ER → trans-Golgi network), where it undergoes processing to its mature form, mobilizes to the cell surface, and expresses type I collagenolytic activity. Together, these analyses define the Cartoon mouse as an unexpected gain-of-abnormal function mutation, wherein the temperature-sensitive mutant phenocopies MT1-MMP−/− mice as a consequence of eliciting a specific ER → trans-Golgi network trafficking defect.


1983 ◽  
Vol 3 (4) ◽  
pp. 672-683
Author(s):  
W E Courchesne ◽  
B Magasanik

The activities of the proline-specific permease (PUT4) and the general amino acid permease (GAP1) of Saccharomyces cerevisiae vary 70- to 140-fold in response to the nitrogen source of the growth medium. The PUT4 and GAP1 permease activities are regulated by control of synthesis and control of activity. These permeases are irreversibly inactivated by addition of ammonia or glutamine, lowering the activity to that found during steady-state growth on these nitrogen sources. Mutants altered in the regulation of the PUT4 permease (Per-) have been isolated. The mutations in these strains are pleiotropic and affect many other permeases, but have no direct effect on various cytoplasmic enzymes involved in nitrogen assimilation. In strains having one class of mutations (per1), ammonia inactivation of the PUT4 and GAP1 permeases did not occur, whereas glutamate and glutamine inactivation did. Thus, there appear to be two independent inactivation systems, one responding to ammonia and one responding to glutamate (or a metabolite of glutamate). The mutations were found to be nuclear and recessive. The inactivation systems are constitutive and do not require transport of the effector molecules per se, apparently operating on the inside of the cytoplasmic membrane. The ammonia inactivation was found not to require a functional glutamate dehydrogenase (NADP). These mutants were used to show that ammonia exerts control of arginase synthesis largely by inducer exclusion. This may be the primary mode of nitrogen regulation for most nitrogen-regulated enzymes of S. cerevisiae.


1997 ◽  
Vol 6 (3) ◽  
pp. 231-238 ◽  
Author(s):  
M.E. Truckenmiller ◽  
Ora Dillon-Carter ◽  
Carlo Tornatore ◽  
Henrietta Kulaga ◽  
Hidetoshi Takashima ◽  
...  

In vitro growth properties of three CNS-derived cell lines were compared under a variety of culture conditions. The M213-20 and J30a cell lines were each derived from embryonic CNS culture with the temperature-sensitive (ts) allele of SV40 large T antigen, tsA58, while the A7 cell line was immortalized using wild-type SV40 large T antigen. Cells immortalized with tsA58 SV40 large T proliferate at the permissive temperature, 33° C, while growth is expected to be suppressed at the nonpermissive temperature, 39.5°C. Both the M213-20 and J30a cell lines were capable of proliferating at 39.5°C continuously for up to 6 mo. All three cell lines showed no appreciable differences in growth rates related to temperature over a 7-day period in either serum-containing or defined serum-free media. The percentage of cells in S-phase of the cell cycle did not decrease or was elevated at 39.5°C for all three cell lines. After 3 wk at 39.5°C, the three cell lines also showed positive immunostaining using two monoclonal antibodies reacting with different epitopes of SV40 large T antigen. Double strand DNA sequence analyses of a 300 base pair (bp) fragment of the large T gene from each cell line, which included the ts locus, revealed mutations in both the J30a and M213-20 cell lines. The J30a cell line ts mutation had reverted to wild type, and two additional loci with bp substitutions with predicted amino acid changes were also found. While the ts mutation of the M213-20 cells was retained, an additional bp substitution with a predicted amino acid change was found. The A7 cell line sequence was identical to the reference wild-type sequence. These findings suggest that (a) nucleic acid sequences in the temperature-sensitive region of the tsA58 allele of SV40 large T are not necessarily stable, and (b) temperature sensitivity of cell lines immortalized with tsA58 is not necessarily retained.


1998 ◽  
Vol 140 (1) ◽  
pp. 1-15 ◽  
Author(s):  
Nelson B. Cole ◽  
Jan Ellenberg ◽  
Jia Song ◽  
Diane DiEuliis ◽  
Jennifer Lippincott-Schwartz

The ER is uniquely enriched in chaperones and folding enzymes that facilitate folding and unfolding reactions and ensure that only correctly folded and assembled proteins leave this compartment. Here we address the extent to which proteins that leave the ER and localize to distal sites in the secretory pathway are able to return to the ER folding environment during their lifetime. Retrieval of proteins back to the ER was studied using an assay based on the capacity of the ER to retain misfolded proteins. The lumenal domain of the temperature-sensitive viral glycoprotein VSVGtsO45 was fused to Golgi or plasma membrane targeting domains. At the nonpermissive temperature, newly synthesized fusion proteins misfolded and were retained in the ER, indicating the VSVGtsO45 ectodomain was sufficient for their retention within the ER. At the permissive temperature, the fusion proteins were correctly delivered to the Golgi complex or plasma membrane, indicating the lumenal epitope of VSVGtsO45 also did not interfere with proper targeting of these molecules. Strikingly, Golgi-localized fusion proteins, but not VSVGtsO45 itself, were found to redistribute back to the ER upon a shift to the nonpermissive temperature, where they misfolded and were retained. This occurred over a time period of 15 min–2 h depending on the chimera, and did not require new protein synthesis. Significantly, recycling did not appear to be induced by misfolding of the chimeras within the Golgi complex. This suggested these proteins normally cycle between the Golgi and ER, and while passing through the ER at 40°C become misfolded and retained. The attachment of the thermosensitive VSVGtsO45 lumenal domain to proteins promises to be a useful tool for studying the molecular mechanisms and specificity of retrograde traffic to the ER.


Sign in / Sign up

Export Citation Format

Share Document