scholarly journals Targeted Recovery of Mutations in Drosophila

Genetics ◽  
2000 ◽  
Vol 156 (3) ◽  
pp. 1169-1173
Author(s):  
Alyssa Bentley ◽  
Bridget MacLennan ◽  
Jonathan Calvo ◽  
Charles R Dearolf

Abstract Reverse genetic techniques will be necessary to take full advantage of the genomic sequence data for Drosophila and other experimental organisms. To develop a method for the targeted recovery of mutations, we combined an EMS chemical mutagenesis regimen with mutation detection by denaturing high performance liquid chromatography (DHPLC). We recovered mutant strains at the high rate of ∼4.8 mutations/kb for every 1000 mutagenized chromosomes from a screen for new mutations in the Drosophila awd gene. Furthermore, we observed that the EMS mutational spectrum in Drosophila germ cells shows a strong preference for 5′-PuG-3′ sites, and for G/C within a stretch of three or more G/C base pairs. Our method should prove useful for targeted mutagenesis screens in Drosophila and other genetically tractable organisms and for more precise studies of mutagenesis and DNA repair mechanisms.

2021 ◽  
Vol 16 ◽  
Author(s):  
Jinghao Peng ◽  
Jiajie Peng ◽  
Haiyin Piao ◽  
Zhang Luo ◽  
Kelin Xia ◽  
...  

Background: The open and accessible regions of the chromosome are more likely to be bound by transcription factors which are important for nuclear processes and biological functions. Studying the change of chromosome flexibility can help to discover and analyze disease markers and improve the efficiency of clinical diagnosis. Current methods for predicting chromosome flexibility based on Hi-C data include the flexibility-rigidity index (FRI) and the Gaussian network model (GNM), which have been proposed to characterize chromosome flexibility. However, these methods require the chromosome structure data based on 3D biological experiments, which is time-consuming and expensive. Objective: Generally, the folding and curling of the double helix sequence of DNA have a great impact on chromosome flexibility and function. Motivated by the success of genomic sequence analysis in biomolecular function analysis, we hope to propose a method to predict chromosome flexibility only based on genomic sequence data. Method: We propose a new method (named "DeepCFP") using deep learning models to predict chromosome flexibility based on only genomic sequence features. The model has been tested in the GM12878 cell line. Results: The maximum accuracy of our model has reached 91%. The performance of DeepCFP is close to FRI and GNM. Conclusion: The DeepCFP can achieve high performance only based on genomic sequence.


Cells ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 1318 ◽  
Author(s):  
Nadja Bischoff ◽  
Sandra Wimberger ◽  
Marcello Maresca ◽  
Cord Brakebusch

Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) genome editing has become a standard method in molecular biology, for the establishment of genetically modified cellular and animal models, for the identification and validation of drug targets in animals, and is heavily tested for use in gene therapy of humans. While the efficiency of CRISPR mediated gene targeting is much higher than of classical targeted mutagenesis, the efficiency of CRISPR genome editing to introduce defined changes into the genome is still low. Overcoming this problem will have a great impact on the use of CRISPR genome editing in academic and industrial research and the clinic. This review will present efforts to achieve this goal by small molecules, which modify the DNA repair mechanisms to facilitate the precise alteration of the genome.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Akihito Kikuchi ◽  
Toshimichi Ikemura ◽  
Takashi Abe

With the remarkable increase in genomic sequence data from various organisms, novel tools are needed for comprehensive analyses of available big sequence data. We previously developed a Batch-Learning Self-Organizing Map (BLSOM), which can cluster genomic fragment sequences according to phylotype solely dependent on oligonucleotide composition and applied to genome and metagenomic studies. BLSOM is suitable for high-performance parallel-computing and can analyze big data simultaneously, but a large-scale BLSOM needs a large computational resource. We have developed Self-Compressing BLSOM (SC-BLSOM) for reduction of computation time, which allows us to carry out comprehensive analysis of big sequence data without the use of high-performance supercomputers. The strategy of SC-BLSOM is to hierarchically construct BLSOMs according to data class, such as phylotype. The first-layer BLSOM was constructed with each of the divided input data pieces that represents the data subclass, such as phylotype division, resulting in compression of the number of data pieces. The second BLSOM was constructed with a total of weight vectors obtained in the first-layer BLSOMs. We compared SC-BLSOM with the conventional BLSOM by analyzing bacterial genome sequences. SC-BLSOM could be constructed faster than BLSOM and cluster the sequences according to phylotype with high accuracy, showing the method’s suitability for efficient knowledge discovery from big sequence data.


2020 ◽  
Vol 15 ◽  
Author(s):  
Affan Alim ◽  
Abdul Rafay ◽  
Imran Naseem

Background: Proteins contribute significantly in every task of cellular life. Their functions encompass the building and repairing of tissues in human bodies and other organisms. Hence they are the building blocks of bones, muscles, cartilage, skin, and blood. Similarly, antifreeze proteins are of prime significance for organisms that live in very cold areas. With the help of these proteins, the cold water organisms can survive below zero temperature and resist the water crystallization process which may cause the rupture in the internal cells and tissues. AFP’s have attracted attention and interest in food industries and cryopreservation. Objective: With the increase in the availability of genomic sequence data of protein, an automated and sophisticated tool for AFP recognition and identification is in dire need. The sequence and structures of AFP are highly distinct, therefore, most of the proposed methods fail to show promising results on different structures. A consolidated method is proposed to produce the competitive performance on highly distinct AFP structure. Methods: In this study, we propose to use machine learning-based algorithms Principal Component Analysis (PCA) followed by Gradient Boosting (GB) for antifreeze protein identification. To analyze the performance and validation of the proposed model, various combinations of two segments composition of amino acid and dipeptide are used. PCA, in particular, is proposed to dimension reduction and high variance retaining of data which is followed by an ensemble method named gradient boosting for modelling and classification. Results: The proposed method obtained the superfluous performance on PDB, Pfam and Uniprot dataset as compared with the RAFP-Pred method. In experiment-3, by utilizing only 150 PCA components a high accuracy of 89.63 was achieved which is superior to the 87.41 utilizing 300 significant features reported for the RAFP-Pred method. Experiment-2 is conducted using two different dataset such that non-AFP from the PISCES server and AFPs from Protein data bank. In this experiment-2, our proposed method attained high sensitivity of 79.16 which is 12.50 better than state-of-the-art the RAFP-pred method. Conclusion: AFPs have a common function with distinct structure. Therefore, the development of a single model for different sequences often fails to AFPs. A robust results have been shown by our proposed model on the diversity of training and testing dataset. The results of the proposed model outperformed compared to the previous AFPs prediction method such as RAFP-Pred. Our model consists of PCA for dimension reduction followed by gradient boosting for classification. Due to simplicity, scalability properties and high performance result our model can be easily extended for analyzing the proteomic and genomic dataset.


Genes ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1212
Author(s):  
J. Spencer Johnston ◽  
Carl E. Hjelmen

Next-generation sequencing provides a nearly complete genomic sequence for model and non-model species alike; however, this wealth of sequence data includes no road map [...]


2021 ◽  
Vol 11 (8) ◽  
pp. 693
Author(s):  
Corina Daniela Ene ◽  
Simona Roxana Georgescu ◽  
Mircea Tampa ◽  
Clara Matei ◽  
Cristina Iulia Mitran ◽  
...  

The interaction of reactive oxygen species (ROS) with lipids, proteins, nucleic acids and hydrocarbonates promotes acute and chronic tissue damage, mediates immunomodulation and triggers autoimmunity in systemic lupus erythematous (SLE) patients. The aim of the study was to determine the pathophysiological mechanisms of the oxidative stress-related damage and molecular mechanisms to counteract oxidative stimuli in lupus nephritis. Our study included 38 SLE patients with lupus nephritis (LN group), 44 SLE patients without renal impairment (non-LN group) and 40 healthy volunteers as control group. In the present paper, we evaluated serum lipid peroxidation, DNA oxidation, oxidized proteins, carbohydrate oxidation, and endogenous protective systems. We detected defective DNA repair mechanisms via 8-oxoguanine-DNA-glycosylase (OGG1), the reduced regulatory effect of soluble receptor for advanced glycation end products (sRAGE) in the activation of AGE-RAGE axis, low levels of thiols, disulphide bonds formation and high nitrotyrosination in lupus nephritis. All these data help us to identify more molecular mechanisms to counteract oxidative stress in LN that could permit a more precise assessment of disease prognosis, as well as developing new therapeutic targets.


Cancers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 504
Author(s):  
Takayuki Saitoh ◽  
Tsukasa Oda

Multiple myeloma (MM) is an incurable plasma cell malignancy characterized by genomic instability. MM cells present various forms of genetic instability, including chromosomal instability, microsatellite instability, and base-pair alterations, as well as changes in chromosome number. The tumor microenvironment and an abnormal DNA repair function affect genetic instability in this disease. In addition, states of the tumor microenvironment itself, such as inflammation and hypoxia, influence the DNA damage response, which includes DNA repair mechanisms, cell cycle checkpoints, and apoptotic pathways. Unrepaired DNA damage in tumor cells has been shown to exacerbate genomic instability and aberrant features that enable MM progression and drug resistance. This review provides an overview of the DNA repair pathways, with a special focus on their function in MM, and discusses the role of the tumor microenvironment in governing DNA repair mechanisms.


Sign in / Sign up

Export Citation Format

Share Document