scholarly journals Energy Sensing Pathways in Aging and Chronic Lung Disease

2020 ◽  
Vol 4 (Supplement_1) ◽  
pp. 750-750
Author(s):  
Victor Thannickal

Abstract The cause-effect relationships between the various “hallmarks of aging” and chronic lung disease are not well understood. We have determined overlapping pathways involving deregulated nutrient sensing, mitochondrial dysfunction, and cellular senescence that may contribute to the evolution of chronic lung disease. In particular, I will discuss alterations in energy/metabolic sensing pathways and mitochondrial dysfunction as pathobiological mechanisms that may explain the age-related increased susceptibility to the development and progression of idiopathic pulmonary fibrosis (IPF), a disease of pulmonary aging. I will then broaden the discussion to include the potential role of these biologic alterations in other chronic lung disease which burden older adults.

2013 ◽  
Vol 45 (3) ◽  
pp. 106-109 ◽  
Author(s):  
Michael C. Velarde

Estrogen provides many beneficial effects early in life by regulating normal tissue development and several physiological functions. While estrogen replacement therapy (ERT) in women was expected to reduce the health risks associated with the age-related decline in estrogen levels during menopause, ERT also resulted in increased progression to other types of diseases. Hence, distinguishing the signaling pathways that regulate the beneficial and detrimental effects of estrogen is important for developing interventions that selectively harness the hormone's beneficial effects, while minimizing its side effects. Estrogen can minimize mitochondrial dysfunction, which is thought to contribute to aging phenotypes. Decline in estrogen levels during menopause may lead to progressive mitochondrial dysfunction and may permanently alter cellular response, including that of estrogen (i.e., ERT). This review discusses the interplay between estrogen and mitochondrial function during the aging process and suggests a potential role of mitochondria in influencing the pleiotropic action of estrogen.


2018 ◽  
Vol 132 (3) ◽  
pp. 375-379 ◽  
Author(s):  
Mathew Suji Eapen ◽  
Sukhwinder Singh Sohal

Airway infections are considered as one of the vital factors driving the pathophysiology of chronic lung disease with significant influences on disease trajectory. Opportunistic lung microbes in diseased conditions induce excessive exacerbations and contribute to airflow limitation. Though there has been considerable amount of information that ascertains their links with airway inflammation, the intricate interaction in clinical conditions are poorly understood and requires further deciphering. Current therapeutic interventions for such pathologies are few and lack the ability to modulate underlying dysfunctional immunity as well as suppress the excessive infectious conditions. Thus, in this Commentary we provide a focused outlook on the mechanisms involved in microbial infestation in lung diseases and provides important information on new therapeutic interventions including the potential role of Resolvins and their derivatives as alternative therapeutic agents in combating such multifaceted pathological mechanisms.


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 937.1-937
Author(s):  
V. Pulito-Cueto ◽  
S. Remuzgo-Martínez ◽  
F. Genre ◽  
V. M. Mora-Cuesta ◽  
D. Iturbe Fernández ◽  
...  

Background:Interstitial lung disease (ILD) is one of the most significant comorbidities of rheumatoid arthritis (RA), increasing the mortality in these patients [1,2]. Although the pathogenesis of ILD associated to RA (RA-ILD+) remains poorly defined [1], it is known that vascular tissue plays a crucial role in lung physiology [3]. In this context, a population of cells termed endothelial progenitor cells (EPC) are involved in vasculogenesis and endothelial tissue repair [4]. Previous reports suggest the implication of EPC in different conditions such as RA and idiopathic pulmonary fibrosis (IPF), the most common and destructive ILD [5,6]. Nevertheless, little is known about their specific role in RA-ILD+.Objectives:The purpose of this study was to shed light on the potential role of EPC in endothelial damage in RA-ILD+.Methods:Peripheral venous blood was collected from a total of 68 individuals (18 with RA-ILD+, 17 with RA-ILD-, 19 with IPF and 14 healthy controls). All subjects were recruited from the Rheumatology and Pneumology departments of Hospital Universitario Marqués de Valdecilla, Santander, Spain. Quantification of EPC was analyzed by the expression of surface antigens by flow cytometry. The combination of antibodies against the stem cell marker CD34, the immature progenitor marker CD133, the endothelial marker VEGF receptor 2 (CD309) and the common leukocyte antigen CD45 was used. EPC were considered as CD34+, CD45Low, CD309+and CD133+. All statistical analyses were performed using Prism software 5 (GraphPad).Results:EPC frequency was significantly increased in patients with RA-ILD+, RA-ILD-and IPF compared to controls (p=0.001, p=0.002, p< 0.0001, respectively). Nevertheless, patients with RA, both RA-ILD+and RA-ILD-, showed a lower frequency of EPC than those with IPF (p= 0.048, p= 0.006, respectively).Conclusion:Our results provide evidence for a potential role of EPC as a reparative compensatory mechanism related to endothelial damage in RA-ILD+, RA-ILD-and IPF patients. Interestingly, EPC frequency may help to establish a differential diagnostic between patients with IPF and those who have an underlying autoimmune disease (RA-ILD+).References:[1] J Clin Med 2019; 8: 2038;[2] Arthritis Rheumatol 2015; 67: 28-38;[3] Nat Protoc 2015; 10: 1697-1708;[4] Science 1997; 275: 964-966;[5] Rheumatology (Oxford) 2012; 51: 1775-1784;[6] Angiogenesis 2013; 16: 147-157.Acknowledgments:Personal funds, VP-C: PREVAL18/01 (IDIVAL); SR-M: RD16/0012/0009 (ISCIII-ERDF); LL-G: PI18/00042 (ISCIII-ERDF); RL-M: Miguel Servet type I CP16/00033 (ISCIII-ESF).Disclosure of Interests:Verónica Pulito-Cueto: None declared, Sara Remuzgo-Martínez: None declared, Fernanda Genre: None declared, Victor Manuel Mora-Cuesta: None declared, David Iturbe Fernández: None declared, Sonia Fernández-Rozas: None declared, Leticia Lera-Gómez: None declared, Pilar Alonso Lecue: None declared, Javier Rodriguez Carrio: None declared, Belén Atienza-Mateo: None declared, Virginia Portilla: None declared, David Merino: None declared, Ricardo Blanco Grant/research support from: AbbVie, MSD, Roche, Consultant of: Abbvie, Eli Lilly, Pfizer, Roche, Bristol-Myers, Janssen, UCB Pharma and MSD, Speakers bureau: Abbvie, Eli Lilly, Pfizer, Roche, Bristol-Myers, Janssen, UCB Pharma. MSD, Alfonso Corrales Speakers bureau: Abbvie, Jose Manuel Cifrián-Martínez: None declared, Raquel López-Mejías: None declared, Miguel A González-Gay Grant/research support from: Pfizer, Abbvie, MSD, Speakers bureau: Pfizer, Abbvie, MSD


Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Qun Chen ◽  
Anna Kovilakath ◽  
Jeremy Allegood ◽  
Lauren A Cowart ◽  
Edward J Lesnefsky

Introduction: Mitochondrial function is impaired in aged hearts. Increased endoplasm reticulum (ER) stress contributes to the mitochondrial dysfunction observed during aging. Ceramides (CRMD) are sphingolipid metabolites that contribute key roles in cell signaling. Increased CRMD can lead to ER stress. Ceramide synthase enzymes (CerS) generate chain length specific CRMD with the CerS isoform 2 (Cers2) forming very long chain CRMD of ≥ 20 carbon acyl chain lengths. Hypothesis: An increase in CRMD content during aging contributes to age-related ER stress. Methods: Male mice (3, 18, 24 mo.) from the NIA colony were studied. Cardiac mitochondria (MITO), mitochondrial associated membranes (MAM), and ER were isolated from mouse hearts. CRMD content was measured using LC-MS. The contents of CerS enzymes were measured by immunoblotting in myocardial homogenates. Results: ER stress increased progressively during aging with increased contents of cleaved ATF6 and CHOP, indicators of increased ER stress, evident at 18 and 24 mo. (Panel A) (all data mean±SEM; *p<0.05 vs. 3 mo., † p<0.05 vs. 18 mo.). Aging increased very long-chain CRMD (≥C20) in ER (Panel B) at 18 and 24 mo. Similar CRMD trends were observed MAM (Panel C), shared membrane domains where ER and MITO interact. The content of CerS2 was increased at 24 mo. compared to 3 mo. (Panel D, n=4 each age). In contrast, the contents of CerS isoforms 4 and 5, that generate shorter chain CRMD (<C20) were unchanged (not shown). CRMD contents in MITO were unaltered with age (not shown). Thus, increased generation of very long chain CRMD in the ER is the likely mechanism of increased ER stress in the aged heart. Conclusion: Aging increased ER CRMD content by enhancing the formation of very long chain CRMD in ER by an increase in CerS2 content, concomitant with the onset of ER stress. The increase in age-induced ER stress, in turn, leads to mitochondrial dysfunction in the aged heart.


2019 ◽  
Vol 8 (9) ◽  
pp. 1345 ◽  
Author(s):  
Julien Guiot ◽  
Ingrid Struman ◽  
Edouard Louis ◽  
Renaud Louis ◽  
Michel Malaise ◽  
...  

Increasing evidence suggests the potential role of extracellular vesicles (EVs) in many lung diseases. According to their subcellular origin, secretion mechanism, and size, EVs are currently classified into three subpopulations: exosomes, microvesicles, and apoptotic bodies. Exosomes are released in most biofluids, including airway fluids, and play a key role in intercellular communication via the delivery of their cargo (e.g., microRNAs (miRNAs)) to target cell. In a physiological context, lung exosomes present protective effects against stress signals which allow them to participate in the maintenance of lung homeostasis. The presence of air pollution alters the composition of lung exosomes (dysregulation of exosomal miRNAs) and their homeostatic property. Indeed, besides their potential as diagnostic biomarkers for lung diseases, lung exosomes are functional units capable of dysregulating numerous pathophysiological processes (including inflammation or fibrosis), resulting in the promotion of lung disease progression. Here, we review recent studies on the known and potential role of lung exosomes/exosomal miRNAs, in the maintaining of lung homeostasis on one hand, and in promoting lung disease progression on the other. We will also discuss using exosomes as prognostic/diagnostic biomarkers as well as therapeutic tools for lung diseases.


Author(s):  
Xiutao Shi ◽  
Xiang Wang ◽  
Glen L. Niebur

Osteoporosis is an age-related skeletal condition characterized by low bone mineral density and deterioration of the trabecular architecture leading to increased susceptibility to fracture [1]. Wolff hypothesized that trabecular architecture adapts to have its principal material axes aligned with the principal loading directions. Regions of experimentally labeled trabecular microdamage correspond to areas of high stress and strain calculated from FEA [2]. Studying the morphology of numerically predicted regions of tissue level yielding might provide insight into the role of trabecular architecture in the strength of trabecular bone.


Sign in / Sign up

Export Citation Format

Share Document