scholarly journals 0s and 1s in marine molecular research: a regional HPC perspective

GigaScience ◽  
2021 ◽  
Vol 10 (8) ◽  
Author(s):  
Haris Zafeiropoulos ◽  
Anastasia Gioti ◽  
Stelios Ninidakis ◽  
Antonis Potirakis ◽  
Savvas Paragkamian ◽  
...  

Abstract High-performance computing (HPC) systems have become indispensable for modern marine research, providing support to an increasing number and diversity of users. Pairing with the impetus offered by high-throughput methods to key areas such as non-model organism studies, their operation continuously evolves to meet the corresponding computational challenges. Here, we present a Tier 2 (regional) HPC facility, operating for over a decade at the Institute of Marine Biology, Biotechnology, and Aquaculture of the Hellenic Centre for Marine Research in Greece. Strategic choices made in design and upgrades aimed to strike a balance between depth (the need for a few high-memory nodes) and breadth (a number of slimmer nodes), as dictated by the idiosyncrasy of the supported research. Qualitative computational requirement analysis of the latter revealed the diversity of marine fields, methods, and approaches adopted to translate data into knowledge. In addition, hardware and software architectures, usage statistics, policy, and user management aspects of the facility are presented. Drawing upon the last decade’s experience from the different levels of operation of the Institute of Marine Biology, Biotechnology, and Aquaculture HPC facility, a number of lessons are presented; these have contributed to the facility’s future directions in light of emerging distribution technologies (e.g., containers) and Research Infrastructure evolution. In combination with detailed knowledge of the facility usage and its upcoming upgrade, future collaborations in marine research and beyond are envisioned.

2018 ◽  
Vol 2018 ◽  
pp. 1-13
Author(s):  
Manuel Romana ◽  
Marilo Martin-Gasulla ◽  
Ana T. Moreno

Most of the rural transportation system is composed of two-lane highways, and many of them serve as the primary means for rural access to urban areas and freeways. In some highways, traffic volumes can be not high enough to justify a four-lane highway but higher than can be served by isolated passing lanes, or can present high number of head-on collisions. In those conditions, 2 + 1 highways are potentially applicable. This type of highway is used to provide high-performance highways as intermediate solution between the common two-lane highway and the freeway. Successful experiences reported in Germany, Sweden, Finland, Poland, or Texas (US) may suggest that they are potentially applicable in other countries. The objective of this white paper is to provide an overview of the past practice in 2 + 1 highways and discuss the research directions and challenges in this field, specially focusing on, but not limited to, operational research in association with the activities of the Subcommittee on Two-Lane Highways (AHB40 2.2) of the Transportation Research Board. The significance of this paper is twofold: (1) it provides wider coverage of past 2 + 1 highways design and evaluation, and (2) it discusses future directions of this field.


Author(s):  
D. Prime ◽  
S. Paul

The demand for more efficient and faster memory structures is greater today than ever before. The efficiency of memory structures is measured in terms of storage capacity and the speed of functioning. However, the production cost of such configurations is the natural constraint on how much can be achieved. Organic memory devices (OMDs) provide an ideal solution, in being inexpensive, and at the same time promising high performance. However, all OMDs reported so far suffer from multiple drawbacks that render their industrial implementation premature. This article introduces the different types of OMDs, discusses the progress in this field over the last 9 years and invokes conundrums that scholars of this field are currently faced with, such as questions about the charging mechanism and stability of devices, contradictions in the published work and some future directions.


2021 ◽  
Vol 2 (3) ◽  
pp. 571-580
Author(s):  
Andrey Vovk ◽  
Amin Pourkaveh Dehkordi ◽  
Rainer Glüge ◽  
Bernhard Karpuschewski ◽  
Jens Sölter

Understanding the effect of thermomechanical loads during finish cutting processes, in our case hard milling, on the surface integrity of the workpiece is crucial for the creation of defined quality characteristics of high-performance components. Compared to computationally generated modifications by simulation, the measurement-based determination of material modifications can only be carried out selectively and on a point-by-point basis. In practice, however, detailed knowledge of the changes in material properties at arbitrary points of the high-performance component is of great interest. In this paper, a modification of the well-known Johnson–Cook material model using the finite element software Abaqus is presented. Special attention was paid to the kinematic hardening behavior of the used steel material. Cyclic loads are relevant for the chip formation simulation because, during milling, after each cut, the material under the surface is loaded plastically several times and not necessarily in the same direction. Therefore, in analogy, multiple bending was investigated on samples made of 42CrMo4. A pronounced Bauschinger effect was observed in the bending tests. An adaptation of the material model to the results of the bending tests was only possible to a limited extent without kinematic hardening, which is why the Johnson–Cook model was supplemented by the Armstrong–Frederick hardening approach. The modified Johnson–Cook–Armstrong–Frederick material model was developed for practical use as a VUMAT and verified by bending tests for simulation use.


Author(s):  
J Michael Barton

The Department of Defense High Performance Computing Modernization Program celebrates its 30th birthday in 2021. It was created to modernize the supercomputer capability of Department of Defense laboratories and test centers and continues to excel in that mission, providing hardware, software, networks and domain expertise. We describe the Program, the environment in which it was created, the people who helped bring it into existence, and future directions.


2018 ◽  
Vol 7 (5) ◽  
pp. 393-411 ◽  
Author(s):  
Zhenhui Li ◽  
Ke Xu ◽  
Fanan Wei

Abstract Photodetectors (PDs) have great potential in applications of imaging, telecommunication, and biological sensing. In this article, state-of-the-art achievements on typical low-dimensional nanostructured PDs and hybrid PDs are reviewed. In the 2D nanostructured PDs part, 2D transition metal dichalcogenides have a natural gap, which promise high sensitivity of photodetection. Graphene and black phosphorus can also stand for 2D nanostructured PDs due to their broadband absorption and tunable direct bandgap, respectively. In the 1D nanostructured PDs part, owing to its high photoconductive characteristic, ZnO nanowire film is a promising material for ultraviolet PDs. Carbon nanotubes show potential in infrared (IR) detection due to its unique physical properties. In the 0D nanostructured PDs part, lead sulfide has a small bandgap and large Bohr exciton radius, which collectively give it a wide spectral tunability in the IR. In the hybrid PDs part, electrical and chemical doping is applied to combine different nanomaterials to realize PDs with high performance. In each part, the present situation and major challenges are overviewed. Then, the evolutions of the methods to overcome these challenges and the tremendous research breakthroughs are demonstrated. At last, future directions that could improve the performance of PDs are discussed.


2013 ◽  
Vol 136 (1) ◽  
Author(s):  
Justin A. Lamont ◽  
Srinath V. Ekkad ◽  
Mary Anne Alvin

The effects of Coriolis force and centrifugal buoyancy have a significant impact on heat transfer behavior inside rotating internal serpentine coolant channels for turbine blades. Due to the complexity of added rotation inside such channels, detailed knowledge of the heat transfer will greatly enhance the blade designer's ability to predict hot spots so coolant may be distributed more effectively. The effects of high rotation numbers are investigated on the heat transfer distributions for different rib types in near entrance and entrance region of the channels. It is important to determine the actual enhancement derived from turbulating channel entrances where heat transfer is already high due to entrance effects and boundary layer growth. A transient liquid crystal technique is used to measure detailed heat transfer coefficients (htc) for a rotating, short length, radially outward coolant channel with rib turbulators. Different rib types such as 90 deg, W, and M-shaped ribs are used to roughen the walls to enhance heat transfer. The channel Reynolds number is held constant at 12,000 while the rotation number is increased up to 0.5. Results show that in the near entrance region, the high performance W and M-shaped ribs are just as effective as the simple 90 deg ribs in enhancing heat transfer. The entrance effect in the developing region causes significantly high baseline heat transfer coefficients thus reducing the effective of the ribs to further enhance heat transfer. Rotation causes increase in heat transfer on the trailing side, while the leading side remains relatively constant limiting the decrement in leading side heat transfer. For all rotational cases, the W and M-shaped ribs show significant effect of rotation with large differences between leading and trailing side heat transfer.


2016 ◽  
Vol 69 (6) ◽  
pp. 601 ◽  
Author(s):  
Colin A. Scholes

Polymeric membranes for gas separation have application in a wide range of industries such as natural gas sweetening and air enrichment. Recently, high-performance gas separation polymeric membranes have been developed based on a novel thermal rearrangement process that produces the resistant poly(benzoxazole) (TR-PBO). This review reports on the current state of the art TR-PBO membranes for gas separation and the underlying chemistry needed to achieve such high separation performance. Particular focus is applied to copolymers based on TR-PBO for membranes as these have attracted considerable research interest recently for their gas separation performance and superior mechanical properties compared with TR-PBO. Also included in this review is a discussion of the future directions of research on TR-PBO-based membranes for gas separation.


2005 ◽  
Vol 7 (2) ◽  
pp. 51-59 ◽  
Author(s):  
J. Dongarra ◽  
T. Sterling ◽  
H. Simon ◽  
E. Strohmaier

Sign in / Sign up

Export Citation Format

Share Document