The Promise of Patient-Derived Colon Organoids to Model Ulcerative Colitis

Author(s):  
Babajide A Ojo ◽  
Kelli L VanDussen ◽  
Michael J Rosen

Abstract Physiologic, molecular, and genetic findings all point to impaired intestinal epithelial function as a key element in the multifactorial pathogenesis of ulcerative colitis (UC). The lack of epithelial-directed therapies is a conspicuous weakness of our UC therapeutic armamentarium. However, a critical barrier to new drug discovery is the lack of preclinical human models of UC. Patient tissue–derived colon epithelial organoids (colonoids) are primary epithelial stem cell–derived in vitro structures capable of self-organization and self-renewal that hold great promise as a human preclinical model for UC drug development. Several single and multi-tissue systems for colonoid culture have been developed, including 3-dimensional colonoids grown in a gelatinous extracellular matrix, 2-dimensional polarized monolayers, and colonoids on a chip that model luminal and blood flow and nutrient delivery. A small number of pioneering studies suggest that colonoids derived from UC patients retain some disease-related transcriptional and epigenetic changes, but they also raise questions regarding the persistence of inflammatory transcriptional programs in culture over time. Additional research is needed to fully characterize the extent to which and under what conditions colonoids accurately model disease-associated epithelial molecular and functional aberrations. With further advancement and standardization of colonoid culture methodology, colonoids will likely become an important tool for realizing precision medicine in UC.

2021 ◽  
Vol 22 (20) ◽  
pp. 10912
Author(s):  
Toshio Takahashi ◽  
Kazuto Fujishima ◽  
Mineko Kengaku

Intestinal epithelial cells (IECs) are crucial for the digestive process and nutrient absorption. The intestinal epithelium is composed of the different cell types of the small intestine (mainly, enterocytes, goblet cells, Paneth cells, enteroendocrine cells, and tuft cells). The small intestine is characterized by the presence of crypt-villus units that are in a state of homeostatic cell turnover. Organoid technology enables an efficient expansion of intestinal epithelial tissue in vitro. Thus, organoids hold great promise for use in medical research and in the development of new treatments. At present, the cholinergic system involved in IECs and intestinal stem cells (ISCs) are attracting a great deal of attention. Thus, understanding the biological processes triggered by epithelial cholinergic activation by acetylcholine (ACh), which is produced and released from neuronal and/or non-neuronal tissue, is of key importance. Cholinergic signaling via ACh receptors plays a pivotal role in IEC growth and differentiation. Here, we discuss current views on neuronal innervation and non-neuronal control of the small intestinal crypts and their impact on ISC proliferation, differentiation, and maintenance. Since technology using intestinal organoid culture systems is advancing, we also outline an organoid-based organ replacement approach for intestinal diseases.


Author(s):  
Wenhao Su ◽  
Yongyu Chen ◽  
Pan Cao ◽  
Yan Chen ◽  
Yuanmei Guo ◽  
...  

There is a growing body of evidence which suggests that intestinal microbiota, especially Fusobacterium nucleatum (F. nucleatum), are associated with intestinal immune disease such as ulcerative colitis (UC). The mechanism by which F. nucleatum promotes intestinal epithelial cell (IEC) death remained undefined. Here, we investigated the potential mechanisms about how F. nucleatum aggravates IEC death in UC. We first detected the abundance of F. nucleatum in UC tissues and analyzed its relationship with the clinical characteristics of UC. Next, we explored whether F. nucleatum promotes intestinal epithelial cell death in vitro and in vivo. Furthermore, we extracted lipopolysaccharide (LPS) of the F. nucleatum and examined whether F. nucleatum exacerbates UC via LPS. Our results indicated that F. nucleatum was abundant in UC tissues and was correlated with clinical characteristics. In addition, we demonstrated that F. nucleatum and its LPS aggravated IEC death by promoted IEC autophagy. Furthermore, autophagy inhibitors, chloroquine (CQ), 3-methyladenine (3-MA) or Atg5 silencing prevented IEC death mediated by F. nucleatum, which suggests F. nucleatum may contribute to UC by activating autophagic cell death. All our results uncover a vital role of F. nucleatum in autophagic cell death and UC, giving rise to a new sight for UC therapy by inhibiting excessive IEC autophagy and autophagic cell death.


Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 2062
Author(s):  
Marcus Lindner ◽  
Anna Laporte ◽  
Stephan Block ◽  
Laura Elomaa ◽  
Marie Weinhart

Gastrointestinal (GI) mucus plays a pivotal role in the tissue homoeostasis and functionality of the gut. However, due to the shortage of affordable, realistic in vitro GI models with a physiologically relevant mucus layer, studies with deeper insights into structural and compositional changes upon chemical or physical manipulation of the system are rare. To obtain an improved mucus-containing cell model, we developed easy-to-use, reusable culture chambers that facilitated the application of GI shear stresses (0.002–0.08 dyn∙cm−2) to cells on solid surfaces or membranes of cell culture inserts in bioreactor systems, thus making them readily accessible for subsequent analyses, e.g., by confocal microscopy or transepithelial electrical resistance (TEER) measurement. The human mucus-producing epithelial HT29-MTX cell-line exhibited superior reorganization into 3-dimensional villi-like structures with highly proliferative tips under dynamic culture conditions when compared to static culture (up to 180 vs. 80 µm in height). Additionally, the median mucus layer thickness was significantly increased under flow (50 ± 24 vs. 29 ± 14 µm (static)), with a simultaneous accelerated maturation of the cells into a goblet-like phenotype. We demonstrated the strong impact of culture conditions on the differentiation and reorganization of HT29-MTX cells. The results comprise valuable advances towards the improvement of existing GI and mucus models or the development of novel systems using our newly designed culture chambers.


2021 ◽  
Vol 15 (Supplement_1) ◽  
pp. S163-S164
Author(s):  
C Wang ◽  
L Yao ◽  
Y Zhang ◽  
Q Cao

Abstract Background Ulcerative colitis (UC) is an idiopathic intestinal inflammatory disease, which leads to chronic intestinal mucosal barrier damage. More and more evidences show that ubiquitination of proteins regulates the occurrence and development of intestinal inflammation. DCAF family proteins could form E3 ubiquitin ligase with CRL4-DDB1 to regulate cell growth, differentiation, apoptosis and other life activities. CRL4DCAF2 is a crucial regulator in cell cycle regulation, but there are few studies on its application in intestinal epithelium. This study aims to explore the specific mechanism of CRL4DCAF2 in regulating the proliferation and repairment of intestinal epithelial cells. Methods DSS - induced colitis in mice was used as the experimental model in vivo. HCT116 and SW480 cell lines were used as experimental models in vitro studies.The Cre-loxP system was used to construct a mouse model of intestinal epithelium-specific DCAF2 knockout. The intestinal mucosa biopsy specimens of 11 normal patients and 11 UC patients were collected. In addition, qRT-PCR, Western blot, RNA-seq and immunofluorescent staining were used to detect the expression levels of target genes in human colon biopsy specimens, mouse colon tissues, HCT116 or SW480 cells Results DCAF2 gene was highly expressed in the colon of mice. The occurrence and development of DSS-induced experimental colitis was accompanied by a significant down-regulation of DCAF2 protein expression in colon. DCAF2 mRNA level was significantly decreased in UC patients. Mouse with intestinal epithelial-specific knockout of DCAF2(i.e. DCAF2IEC-KO) suffered from embryonic death. Compared with wild-type adult C57BL/6J mice, DCAF2IEC-KD mouse showed more severe intestinal inflammation in DSS-induced colitis model. CCK-8 test, PI staining and EDU staining flow cytometry experiments showed that the proliferation of intestinal epithelial cells with DCAF2 overexpression was faster than that of the control (P < 0.05) in HCT116 and SW480 cell lines, while in knockdown of DCAF2 models, the opposite results were obtained. Its effect may be related to the ubiquitination of p21. At the same time, MLN4924 in vivo and in vitro experiments further verified our experimental results. Combined with RNA-seq and Western blot, we also found that DCAF2 may reduce the symptoms of colitis by maintaining the stability of autophagy. Conclusion DCAF2 is low expressed in patients with ulcerative colitis, which may promote the activation and proliferation of intestinal epithelial cells. It could maintain autophagy stability, and restore intestinal barrier, thus alleviate the development of ulcerative colitis


Author(s):  
Marcus Lindner ◽  
Anna Laporte ◽  
Stephan Block ◽  
Laura Elomaa ◽  
Marie Weinhart

The gastrointestinal (GI) mucus layer plays a pivotal role in tissue homoeostasis and functionality of the gut. However, due to the shortage of affordable, realistic in vitro mucus models, studies with deeper insights into its structure and characteristics are rare. To obtain an improved mucus model, we developed a reusable culture chamber facilitating the application of physiologically relevant GI shear stresses (0.002-0.08 dyn/cm) to cells in a bioreactor system. Differentiation of a confluent monolayer of human mucus-producing epithelial HT29-MTX cells was monitored under dynamic and static culture conditions. Cells under flow remained highly proliferative and analysis via confocal microscopy revealed superior reorganization into 3-dimensional villi-like structures compared to static culture (up to 120 vs. 80 µm in height). Additionally, the median mucus thickness was significantly increased under dynamic conditions compared to static culture (41±14 vs. 29±14 µm) with a simultaneous drastic reduction of culture time from three to two weeks for sufficient maturation into goblet-like cells. We demonstrated the impact of culture conditions on the differentiation of HT29-MTX cells, revealing outstanding in vivo like reorganization of cells and the production of thick adherent mucus networks when cultured under physiological shear stress using our newly designed culture chamber.


2020 ◽  
Author(s):  
Wyatt E. Lanik ◽  
Cliff J. Luke ◽  
Lila S. Nolan ◽  
Qingqing Gong ◽  
Jamie M. Rimer ◽  
...  

AbstractNecrotizing enterocolitis (NEC) is a deadly gastrointestinal disease of premature infants characterized by an exaggerated inflammatory response, dysbiosis of the gut microbiome, decreased epithelial cell proliferation, and gut barrier disruption. Here, we describe a novel in vitro model of human neonatal small intestinal epithelium (Neonatal-Intestine-on-a-Chip) that mimics key features of intestinal physiology by utilizing a combination of premature infant intestinal enteroids co-cultured with human intestinal microvascular endothelial cells within a microfluidic device. We used our Neonatal-Intestine-on-a-Chip to recapitulate NEC pathophysiology in an in vitro model system of the premature gut inoculated with infant-derived microbiota. This model, also known as NEC-on-a-Chip, emulates the prominent features of NEC, demonstrating significant upregulation of pro-inflammatory cytokines, decreased intestinal epithelial cell markers, reduced epithelial proliferation and disrupted epithelial barrier integrity. NEC-on-a-Chip provides a novel preclinical model of NEC, which may be used as a personalized medicine approach to test new therapeutics for this devastating disease.


Author(s):  
Cindy X. Zhang ◽  
Melissa S. Love ◽  
Case W. McNamara ◽  
Victor Chi ◽  
Ashley K. Woods ◽  
...  

Infection with Cryptosporidium spp. can cause severe diarrhea leading to long-term adverse impacts and even death in malnourished children and immunocompromised patients. The only FDA-approved drug for treating cryptosporidiosis, nitazoxanide, has limited efficacy in the populations impacted the most by the diarrheal disease, and safe, effective treatment options are urgently needed. Initially identified by a large-scale phenotypic screening campaign, the antimycobacterial therapeutic clofazimine demonstrated great promise in both in vitro and in vivo preclinical models of Cryptosporidium infection. Unfortunately, a Phase 2a clinical trial in HIV infected adults with cryptosporidiosis did not identify any clofazimine treatment effect on Cryptosporidium infection burden or clinical outcomes. To explore whether clofazimine’s lack of efficacy in the Phase 2a trial may have been due to subtherapeutic clofazimine concentrations, a pharmacokinetic/pharmacodynamic modeling approach was undertaken to determine the relationship between clofazimine in vivo concentrations and treatment effects in multiple preclinical infection models. Exposure-response relationships were characterized using E max and logistic models which allowed predictions of efficacious clofazimine concentrations for the control and reduction of disease burden. After establishing exposure-response relationships for clofazimine treatment of Cryptosporidium infection in our preclinical model studies, it was unmistakable that the clofazimine levels observed in the Phase 2a study participants were well below concentrations associated with anti- Cryptosporidium efficacy. Thus, despite a dosing regimen above the highest doses recommended for mycobacterial therapy, it is very likely the lack of treatment effect in the Phase 2a trial was at least partially due to clofazimine concentrations below those required for efficacy against cryptosporidiosis. It is unlikely that clofazimine will provide a remedy for the large number of cryptosporidiosis patients currently without a viable treatment option unless alternative, safe clofazimine formulations with improved oral absorption are developed.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Ning Li ◽  
Wenjing Sun ◽  
Xin Zhou ◽  
Hao Gong ◽  
Yuqing Chen ◽  
...  

Ulcerative colitis is a common inflammatory bowel disease, and the activation of thePI3K/AKT and NF-κB signaling pathways plays a pivotal role in its pathogenesis. Dihydroartemisinin (DHA) is a widely used antimalarial drug and has shown anticancer effect partially through inhibiting the activation of PI3K/AKT and NF-κB. This study aimed to investigate the effect of dihydroartemisinin on ulcerative colitis and its mechanism. Adult male C57 mice were subjected to 3.0% dextran sulfate sodium (DSS) for seven days; simultaneously, dihydroartemisinin or control saline was administered by oral gavage once a day. In vitro, the intestinal epithelial cell-6 was treated with LPS for 24 hours with or without dihydroartemisinin combined with PI3K/Akt activator 740 Y-P or NF-κB activator phorbol myristate acetate. Western blotting was used to test the activation of PI3K/AKT and NF-κB. Dihydroartemisinin significantly ameliorated body weight loss, shortened colon length, and increased DAI in DSS-induced colitis. Meanwhile, histological damage was improved and was accompanied by decreased expression and secretion of proinflammatory cytokines. Moreover, DSS-induced elevation of phosphorylation of PI3K, AKT, IKKα, IκBα, and NF-κB (p65) was remarkably blunted by dihydroartemisinin both in vivo and in vitro, indicating an inhibitive property on the PI3K/AKT and NF-κB signaling pathways. Furthermore, administration of 740 Y-P or PMA significantly blocked protective activity of dihydroartemisinin against colitis in vitro. In conclusion, dihydroartemisinin can attenuate DSS-induced colitis, and its anticolitis effect might be mediated via the PI3K/AKT and NF-κB signaling pathways. DHA might serve as a promising drug for patients with ulcerative colitis.


Cells ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 1074 ◽  
Author(s):  
Giusy Sammarco ◽  
Mohammad Shalaby ◽  
Sudharshan Elangovan ◽  
Luciana Petti ◽  
Giulia Roda ◽  
...  

Hyaluronan (HA) has proven to be beneficial in the treatment of several diseases. Recently, it has been shown that the local application of HA (IBD98E) improves endoscopic and clinical outcomes in subjects with active distal ulcerative colitis (UC). However, the mechanisms by which this polysaccharide exerts its beneficial effects are unclear. Here, we demonstrated that HA treatment in vitro and in vivo improved mucosal healing by accelerating intestinal epithelial regeneration. Indeed, mice treated with HA showed a faster recovery from colitis and reduced endoscopic signs of mucosal inflammation compared to those receiving saline. Furthermore, histological analysis revealed less ulcerated mucosa in mice treated with HA, characterized by re-epithelialized areas. TSG-6, the secreted product of TNF-stimulated gene-6, is an HA-binding protein shown previously to have tissue-protective properties and promote wound healing. Mucosal levels of TSG-6 increased in UC patients compared to the healthy controls and also after wounding in mice. TSG-6 deletion prevented the beneficial properties of HA in mucosal wound repair, suggesting that the interaction of HA with TSG-6 is crucial for intestinal epithelial regeneration. Overall these results are consistent with HA having a therapeutic effect via the promotion of mucosal healing in patients with ulcerative colitis.


Sign in / Sign up

Export Citation Format

Share Document