scholarly journals Observing the ocean interior in support of integrated management

2016 ◽  
Vol 73 (8) ◽  
pp. 1947-1954 ◽  
Author(s):  
Verena M. Trenkel ◽  
Nils Olav Handegard ◽  
Thomas C. Weber

Abstract Active- and passive-acoustic methods are widely used tools for observing, monitoring, and understanding marine ecosystems. From 25 to 28 May 2015, 214 scientists from 31 nations gathered for an ICES symposium on Marine Ecosystem Acoustics (SoME Acoustics) to discuss three major themes related to acoustic observations of marine ecosystems: (i) recent developments in acoustic and platform technologies; (ii) acoustic characterisation of aquatic organisms, ecosystem structure, and ecosystem processes; and (iii) contribution of acoustics to integrated ecosystem assessments and management. The development of, and access to new instruments, such as broad bandwidth systems, enables insightful ecological studies and innovative management approaches. Unresolved ecological questions and the increasing move towards ecosystem based management pose further challenges to scientists and instrument developers. Considering the SoME Acoustics presentations in the context of three previous ICES symposia on fisheries acoustics, topics increasingly emphasize ecosystem studies and management. The continued expansion of work and progress in marine ecosystem acoustics is due to the cross-disciplinary work of fisheries acousticians, engineers, ecologists, modellers, and others. An analysis of the symposium co-authorship network reveals a highly connected acoustic science community collaborating around the globe.

2011 ◽  
Vol 7 (4) ◽  
pp. 484-486 ◽  
Author(s):  
Christian Möllmann ◽  
Alessandra Conversi ◽  
Martin Edwards

Abrupt and rapid ecosystem shifts (where major reorganizations of food-web and community structures occur), commonly termed regime shifts, are changes between contrasting and persisting states of ecosystem structure and function. These shifts have been increasingly reported for exploited marine ecosystems around the world from the North Pacific to the North Atlantic. Understanding the drivers and mechanisms leading to marine ecosystem shifts is crucial in developing adaptive management strategies to achieve sustainable exploitation of marine ecosystems. An international workshop on a comparative approach to analysing these marine ecosystem shifts was held at Hamburg University, Institute for Hydrobiology and Fisheries Science, Germany on 1–3 November 2010. Twenty-seven scientists from 14 countries attended the meeting, representing specialists from seven marine regions, including the Baltic Sea, the North Sea, the Barents Sea, the Black Sea, the Mediterranean Sea, the Bay of Biscay and the Scotian Shelf off the Canadian East coast. The goal of the workshop was to conduct the first large-scale comparison of marine ecosystem regime shifts across multiple regional areas, in order to support the development of ecosystem-based management strategies.


2019 ◽  
Vol 3 (2) ◽  
pp. 233-243 ◽  
Author(s):  
Ryan F. Heneghan ◽  
Ian A. Hatton ◽  
Eric D. Galbraith

Abstract Climate change is a complex global issue that is driving countless shifts in the structure and function of marine ecosystems. To better understand these shifts, many processes need to be considered, yet they are often approached from incompatible perspectives. This article reviews one relatively simple, integrated perspective: the abundance-size spectrum. We introduce the topic with a brief review of some of the ways climate change is expected to impact the marine ecosystem according to complex numerical models while acknowledging the limits to understanding posed by complex models. We then review how the size spectrum offers a simple conceptual alternative, given its regular power law size-frequency distribution when viewed on sufficiently broad scales. We further explore how anticipated physical aspects of climate change might manifest themselves through changes in the elevation, slope and regularity of the size spectrum, exposing mechanistic questions about integrated ecosystem structure, as well as how organism physiology and ecological interactions respond to multiple climatic stressors. Despite its application by ecosystem modellers and fisheries scientists, the size spectrum perspective is not widely used as a tool for monitoring ecosystem adaptation to climate change, providing a major opportunity for further research.


2019 ◽  
Author(s):  
Sheila J. J. Heymans ◽  
Morten Skogen ◽  
Corinna Schrum ◽  
Cosimo Solidoro

Integrated management of the marine environment requires a holistic understanding of marine ecosystems, rather than focusing on single issues, species, or ecosystem services in isolation. Marine ecosystem models are an important analytical approach to: integrate knowledge, data, and information; improve understanding on ecosystem functioning; and complement monitoring and observation efforts. They also offer the potential to predict the response of marine ecosystems to future scenarios and to support the implementation of ecosystem-based management of our seas and ocean.Europe has an excellent capability in Marine Ecosystem Modelling and these are being increasingly used as a tool for ecosystem management. However, there remains a mismatch between scientific research and what policy makers need to know. EMB Future Science Brief 4 examines current state-of-the-art in Europe and beyond and recommends key areas where marine ecosystem modelling capability could be strengthened, including ways to better connect models, observations and societal needs.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
C. Sylvie Campagne ◽  
Joseph Langridge ◽  
Joachim Claudet ◽  
Rémi Mongruel ◽  
Eric Thiébaut

Abstract Background The current biodiversity crisis calls for an urgent need to sustainably manage human uses of nature. The Ecosystem Services (ES) concept defined as « the benefits humans obtain from nature » support decisions aimed at promoting nature conservation. However, marine ecosystems, in particular, endure numerous direct pressures (e.g., habitat loss and degradation, overexploitation, pollution, climate change, and the introduction of non-indigenous species) all of which threaten ecosystem structure, functioning, and the very provision of ES. While marine ecosystems often receive less attention than terrestrial ecosystems in ES literature, it would also appear that there is a heterogeneity of knowledge within marine ecosystems and within the different ES provided. Hence, a systematic map on the existing literature will aim to highlight knowledge clusters and knowledge gaps on how changes in marine ecosystems influence the provision of marine ecosystem services. This will provide an evidence base for possible future reviews, and may help to inform eventual management and policy decision-making. Methods We will search for all evidence documenting how changes in structure and functioning of marine ecosystems affect the delivery of ES, across scientific and grey literature sources. Two bibliographic databases, Scopus and Web of Science Core Collection, will be used with a supplementary search undertaken in Google scholar. Multiple organisational websites related to intergovernmental agencies, supra-national or national structures, and NGOs will also be searched. Searches will be performed with English terms only without any geographic or temporal limitations. Literature screening, against predefined inclusion criteria, will be undertaken on title, abstract, and then full texts. All qualifying literature will be subjected to coding and meta-data extraction. No formal validity appraisal will be undertaken. Indeed, the map will highlight how marine ecosystem changes impact the ES provided. Knowledge gaps will be identified in terms of which ecosystem types, biodiversity components, or ES types are most or least studied and how these categories are correlated. Finally, a database will be provided, we will narratively describe this evidence base with summary figures and tables of pertinent study characteristics.


1975 ◽  
Vol 2 (1) ◽  
pp. 14-16
Author(s):  
Elisabeth Mann Borgese

Pacem in Maribus once again stressed that an ocean regime must encompass the oceans as a whole and be considered as a sub-system of the entire global system. Jurisdictional decisions, including those affecting the Exclusive Economic Zone (EEZ), must reflect that paramount concern. It is not a matter of geographical realignment or of partition; marine ecosystem do not correspond to political demarcations. Nor is mankind, for which the concept of the common heritage is prescribed, confined to coastal states or to the present generation.In its discussions and studies, Pacem in Maribus has consistently stressed the significance of rapid scientific and technological developments which have radically changed the nature of many conventional uses of the sea and call for management as the only alternative to conflict and possible disasters. In its commitment to an Ocean Space Authority rather than to an International Sea-bed Authority, Pacem in Maribus contends that activities on the sea-bed cannot be dissociated from activities in the water-column, at the surface, and at the atmospheric interface; that the sea-bed must become part of an integrated management system for ocean space; and that claims to national jurisdiction carry a surrogate responsibility in that management.Pacem in Maribus contends that any Law of the Sea which does not respect and embody these overriding considerations will prove to be ineffective if not inoperable.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Dimitri Kalenitchenko ◽  
Erwan Peru ◽  
Pierre E. Galand

AbstractPredicting ecosystem functioning requires an understanding of the mechanisms that drive microbial community assembly. Many studies have explored microbial diversity extensively and environmental factors are thought to be the principal drivers of community composition. Community assembly is, however, also influenced by past conditions that might affect present-day assemblages. Historical events, called legacy effects or historical contingencies, remain poorly studied in the sea and their impact on the functioning of the communities is not known. We tested the influence, if any, of historical contingencies on contemporary community assembly and functions in a marine ecosystem. To do so, we verified if different inoculum communities colonizing the same substrate led to communities with different compositions. We inoculated wood with sea water microbes from different marine environments that differ in ecological and evolutionary history. Using 16S rRNA and metagenomic sequencing, it was demonstrated that historical contingencies change the composition and potential metabolisms of contemporary communities. The effect of historical events was transient, dominated by environmental selection as, over time, species sorting was a more important driver of community assembly. Our study shows not only that historical contingencies affect marine ecosystems but takes the analysis a step further by characterizing this effect as strong but transient.


Water ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2060
Author(s):  
Elvira Buonocore ◽  
Umberto Grande ◽  
Pier Paolo Franzese ◽  
Giovanni F. Russo

The biotic and abiotic assets of the marine environment form the “marine natural capital” embedded in the global ocean. Marine natural capital provides the flow of “marine ecosystem services” that are directly used or enjoyed by people providing benefits to human well-being. They include provisioning services (e.g., food), regulation and maintenance services (e.g., carbon sequestration and storage, and coastal protection), and cultural services (e.g., tourism and recreational benefits). In recent decades, human activities have increased the pressures on marine ecosystems, often leading to ecosystem degradation and biodiversity loss and, in turn, affecting their ability to provide benefits to humans. Therefore, effective management strategies are crucial to the conservation of healthy and diverse marine ecosystems and to ensuring their long-term generation of goods and services. Biophysical, economic, and sociocultural assessments of marine ecosystem services are much needed to convey the importance of natural resources to managers and policy makers supporting the development and implementation of policies oriented for the sustainable management of marine resources. In addition, the accounting of marine ecosystem service values can be usefully complemented by their mapping to enable the identification of priority areas and management strategies and to facilitate science–policy dialogue. Given this premise, this study aims to review trends and evolution in the concept of marine ecosystem services. In particular, the global scientific literature on marine ecosystem services is explored by focusing on the following main aspects: the definition and classification of marine ecosystem services; their loss due to anthropogenic pressures, alternative assessment, and mapping approaches; and the inclusion of marine ecosystem services into policy and decision-making processes.


2018 ◽  
Vol 4 (10) ◽  
pp. eaat5091 ◽  
Author(s):  
Haijun Song ◽  
Paul B. Wignall ◽  
Alexander M. Dunhill

The Permian-Triassic mass extinction was the worst crisis faced by life; it killed >90% of marine species in less than 0.1 million years (Ma). However, knowledge of its macroecological impact over prolonged time scales is limited. We show that marine ecosystems dominated by non-motile animals shifted to ones dominated by nektonic groups after the extinction. In Triassic oceans, animals at high trophic levels recovered faster than those at lower levels. The top-down rebuilding of marine ecosystems was still underway in the latest Triassic, ~50 Ma after the extinction, and contrasts with the ~5-Ma recovery required for taxonomic diversity. The decoupling between taxonomic and ecological recoveries suggests that a process of vacant niche filling before reaching the maximum environmental carrying capacity is independent of ecosystem structure building.


2015 ◽  
Vol 12 (11) ◽  
pp. 3301-3320 ◽  
Author(s):  
K. B. Rodgers ◽  
J. Lin ◽  
T. L. Frölicher

Abstract. Marine ecosystems are increasingly stressed by human-induced changes. Marine ecosystem drivers that contribute to stressing ecosystems – including warming, acidification, deoxygenation and perturbations to biological productivity – can co-occur in space and time, but detecting their trends is complicated by the presence of noise associated with natural variability in the climate system. Here we use large initial-condition ensemble simulations with an Earth system model under a historical/RCP8.5 (representative concentration pathway 8.5) scenario over 1950–2100 to consider emergence characteristics for the four individual and combined drivers. Using a 1-standard-deviation (67% confidence) threshold of signal to noise to define emergence with a 30-year trend window, we show that ocean acidification emerges much earlier than other drivers, namely during the 20th century over most of the global ocean. For biological productivity, the anthropogenic signal does not emerge from the noise over most of the global ocean before the end of the 21st century. The early emergence pattern for sea surface temperature in low latitudes is reversed from that of subsurface oxygen inventories, where emergence occurs earlier in the Southern Ocean. For the combined multiple-driver field, 41% of the global ocean exhibits emergence for the 2005–2014 period, and 63% for the 2075–2084 period. The combined multiple-driver field reveals emergence patterns by the end of this century that are relatively high over much of the Southern Ocean, North Pacific, and Atlantic, but relatively low over the tropics and the South Pacific. For the case of two drivers, the tropics including habitats of coral reefs emerges earliest, with this driven by the joint effects of acidification and warming. It is precisely in the regions with pronounced emergence characteristics where marine ecosystems may be expected to be pushed outside of their comfort zone determined by the degree of natural background variability to which they are adapted. The results underscore the importance of sustained multi-decadal observing systems for monitoring multiple ecosystems drivers.


Science ◽  
2019 ◽  
Vol 365 (6450) ◽  
pp. 284-288 ◽  
Author(s):  
Jong-Yeon Park ◽  
Charles A. Stock ◽  
John P. Dunne ◽  
Xiaosong Yang ◽  
Anthony Rosati

Climate variations have a profound impact on marine ecosystems and the communities that depend upon them. Anticipating ecosystem shifts using global Earth system models (ESMs) could enable communities to adapt to climate fluctuations and contribute to long-term ecosystem resilience. We show that newly developed ESM-based marine biogeochemical predictions can skillfully predict satellite-derived seasonal to multiannual chlorophyll fluctuations in many regions. Prediction skill arises primarily from successfully simulating the chlorophyll response to the El Niño–Southern Oscillation and capturing the winter reemergence of subsurface nutrient anomalies in the extratropics, which subsequently affect spring and summer chlorophyll concentrations. Further investigations suggest that interannual fish-catch variations in selected large marine ecosystems can be anticipated from predicted chlorophyll and sea surface temperature anomalies. This result, together with high predictability for other marine-resource–relevant biogeochemical properties (e.g., oxygen, primary production), suggests a role for ESM-based marine biogeochemical predictions in dynamic marine resource management efforts.


Sign in / Sign up

Export Citation Format

Share Document