Estuarine retention and production of striped bass larvae: a mark-recapture experiment

2017 ◽  
Vol 74 (6) ◽  
pp. 1735-1748 ◽  
Author(s):  
David H. Secor ◽  
Edward D. Houde ◽  
Loren L. Kellogg

Abstract Mark-recapture experiments were conducted in the tidal Nanticoke River (Chesapeake Bay) to determine how the salt front retains striped bass larvae and controls nursery production. During two spring spawning seasons, 25.1 million hatchery-produced, first-feeding larvae (5–12 days post-hatch) were released with chemically marked otoliths at selected locations and times. Surveys tracked the spatial and demographic fates of released and naturally spawned larvae. Released larvae dispersed rapidly within the freshwater tidal portion of the estuary and were retained above the salt front. Their distributions overlapped with natural larvae. Growth and mortality rates did not differ with respect to release location, but did vary with day of release, influenced by storm events and seasonal changes in temperature. In 1993, a group released during a storm event did not yield any recaptured larvae. Zooplankton concentrations in both years were likely sufficient for successful larval feeding. In spring 1993, a season of relatively high freshwater flow, nursery volume was 2.1-fold larger and juvenile production from larval releases was fourfold higher than in 1992. We propose that increased nursery volume reduces variance in water quality, enhances retention of larvae within the nursery, thus increasing production of larval striped bass.

2016 ◽  
Vol 34 (1) ◽  
pp. 75-84 ◽  
Author(s):  
V. Pierrard ◽  
G. Lopez Rosson

Abstract. With the energetic particle telescope (EPT) performing with direct electron and proton discrimination on board the ESA satellite PROBA-V, we analyze the high-resolution measurements of the charged particle radiation environment at an altitude of 820 km for the year 2015. On 17 March 2015, a big geomagnetic storm event injected unusual fluxes up to low radial distances in the radiation belts. EPT electron measurements show a deep dropout at L > 4 starting during the main phase of the storm, associated to the penetration of high energy fluxes at L < 2 completely filling the slot region. After 10 days, the formation of a new slot around L = 2.8 for electrons of 500–600 keV separates the outer belt from the belt extending at other longitudes than the South Atlantic Anomaly. Two other major events appeared in January and June 2015, again with injections of electrons in the inner belt, contrary to what was observed in 2013 and 2014. These observations open many perspectives to better understand the source and loss mechanisms, and particularly concerning the formation of three belts.


<em>Abstract.</em>—Our objectives were to determine if striped bass <em>Morone saxatilis </em>larvae were present in the East River and if so, could they have come from the Hudson River. To meet the first objective, we examined entrainment data collected at the Charles Poletti Power Plant (Poletti) during the years 1999 through 2002. To meet the second objective, we examined the simulated release of 168,000 neutrally buoyant, passive particles in the lower Hudson River Estuary, using a particle-tracking model that was linked to an estuarine circulation model. We also compared the abundance of striped bass post-yolk-sac larvae (PYSL) collected in the East River at Poletti with the abundance of striped bass PYSL collected in the Battery region of the lower Hudson River Estuary and the abundance of striped bass PYSL in the Battery region with freshwater flow in the estuary. Striped bass PYSL were collected by entrainment sampling in the East River at Poletti every year from 1999 through 2002. The striped bass PYSL in the East River probably came from the Hudson River Estuary because the median probability that neutrally buoyant, passive particles would be transported from the lower Hudson River Estuary to the upper East River and western Long Island Sound was 0.12, with a median transport time of 2 d, and because the mean density of striped bass PYSL was highest at Poletti and in the Battery region during the same year. The abundance of striped bass PYSL in the Battery region was higher when freshwater flow during May and early June was higher.


Water ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1523 ◽  
Author(s):  
Juan T. García ◽  
Joseph R. Harrington

The River Bandon located in County Cork (Ireland) has been time-continuously monitored by turbidity probes, as well as automatic and manual suspended sediment sampling. The current work evaluates three different models used to estimate the fine sediment concentration during storm-based events over a period of one year. The modeled suspended sediment concentration is compared with that measured at an event scale. Uncertainty indices are calculated and compared with those presented in the bibliography. An empirically-based model was used as a reference, as this model has been previously applied to evaluate sediment behavior over the same time period in the River Bandon. Three other models have been applied to the gathered data. First is an empirically-based storm events model, based on an exponential function for calculation of the sediment output from the bed. A statistically-based approach first developed for sewers was also evaluated. The third model evaluated was a shear stress erosion-based model based on one parameter. The importance of considering the fine sediment volume stored in the bed and its consolidation to predict the suspended sediment concentration during storm events is clearly evident. Taking into account dry weather periods and the bed erosion in previous events, knowledge on the eroded volume for each storm event is necessary to adjust the parameters for each model.


Water ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2490 ◽  
Author(s):  
Ryan Cheah ◽  
Lawal Billa ◽  
Andy Chan ◽  
Fang Yenn Teo ◽  
Biswajeet Pradhan ◽  
...  

Conservative peak flood discharge estimation methods such as the rational method do not take into account the soil infiltration of the precipitation, thus leading to inaccurate estimations of peak discharges during storm events. The accuracy of estimated peak flood discharge is crucial in designing a drainage system that has the capacity to channel runoffs during a storm event, especially cloudbursts and in the analysis of flood prevention and mitigation. The aim of this study was to model the peak flood discharges of each sub-watershed in Selangor using a geographic information system (GIS). The geospatial modelling integrated the watershed terrain model, the developed Soil Conservation Service Curve Cumber (SCS-CN) and precipitation to develop an equation for estimation of peak flood discharge. Hydrological Engineering Center-Hydrological Modeling System (HEC-HMS) was used again to simulate the rainfall-runoff based on the Clark-unit hydrograph to validate the modelled estimation of peak flood discharge. The estimated peak flood discharge showed a coefficient of determination, r2 of 0.9445, when compared with the runoff simulation of the Clark-unit hydrograph. Both the results of the geospatial modelling and the developed equation suggest that the peak flood discharge of a sub-watershed during a storm event has a positive relationship with the watershed area, precipitation and Curve Number (CN), which takes into account the soil bulk density and land-use of the studied area, Selangor in Malaysia. The findings of the study present a comparable and holistic approach to the estimation of peak flood discharge in a watershed which can be in the absence of a hydrodynamic simulation model.


1998 ◽  
Vol 38 (10) ◽  
pp. 115-122 ◽  
Author(s):  
Thomas J. R. Pettersson

The aim of this study was to investigate a small open detention pond predominantly receiving stormwater drainage from a highway. The results showed a difference in pollutant removal characteristics. Particle-associated pollutants were effectively removed during storm events as indicated by EMC (Event Mean Concentrations) while dissolved pollutants were not effectively removed. Outflow pollutant loads followed linear profiles when seven consecutive storm events were represented as cumulative graphs. PEMC's (Partial EMC's) during a storm event showed an association between the specific surface area of small particles and lead content. A detention pond should be designed according to capacity to detain the complete storm volume, thus avoiding short-circuiting of the pond by pollutants.


2006 ◽  
Vol 53 (2) ◽  
pp. 33-44 ◽  
Author(s):  
S. Fujii ◽  
M. Moriya ◽  
P. Songprasert ◽  
H. Ihara

A series of runoff surveys was conducted for more than one year in two small catchments of the Kamo River basin (75.4 km2) and the Takano River basin (66.8 km2) in Kyoto, Japan, which adjoin each other, and may have the same precipitation pattern. The investigation consisted of a high-frequency periodic survey, a long-term regular survey and a storm event survey. The survey results were compared with the regional properties of the basins, and the following results were obtained. (1) Pollutant loadings were successfully estimated as two portions of base discharge and storm events discharge from the survey results. (2) Estimated annual loading of the sites was 2.9–4.5, 1.3–1.8, 17–27, 1.3–2.2, 0.076–0.97 t/km2/y, respectively for CODMn, DOC, SS, TN and TP. (3) 52–53% of the whole flow, which was caused by rainfall events, conveyed 81–87, 68–73, 92–95, 64–67, 76–81% of the whole loading, respectively for CODMn, DOC, SS, TN and TP. (4) Differences of regional properties in two basins cause different runoff patterns, but the differences in runoff patterns also depend on the rainfall patterns. In general, a more urbanized basin receives early and strong influence of precipitation on the storm event runoff.


2011 ◽  
Vol 11 (10) ◽  
pp. 2821-2833 ◽  
Author(s):  
M. G. Donat ◽  
T. Pardowitz ◽  
G. C. Leckebusch ◽  
U. Ulbrich ◽  
O. Burghoff

Abstract. A refined model for the calculation of storm losses is presented, making use of high-resolution insurance loss records for Germany and allowing loss estimates on a spatial level of administrative districts and for single storm events. Storm losses are calculated on the basis of wind speeds from both ERA-Interim and NCEP reanalyses. The loss model reproduces the spatial distribution of observed losses well by taking specific regional loss characteristics into account. This also permits high-accuracy estimates of total cumulated losses, though slightly underestimating the country-wide loss sums for storm "Kyrill", the most severe event in the insurance loss records from 1997 to 2007. A larger deviation, which is assigned to the relatively coarse resolution of the NCEP reanalysis, is only found for one specific rather small-scale event, not adequately captured by this dataset. The loss model is subsequently applied to the complete reanalysis period to extend the storm event catalogue to cover years when no systematic insurance records are available. This allows the consideration of loss-intensive storm events back to 1948, enlarging the event catalogue to cover the recent 60+ years, and to investigate the statistical characteristics of severe storm loss events in Germany based on a larger sample than provided by the insurance records only. Extreme value analysis is applied to the loss data to estimate the return periods of loss-intensive storms, yielding a return period for storm "Kyrill", for example, of approximately 15 to 21 years.


2011 ◽  
Vol 64 (8) ◽  
pp. 1692-1699 ◽  
Author(s):  
C. F. Yong ◽  
A. Deletic ◽  
T. D. Fletcher ◽  
M. R. Grace

Pervious pavements are an effective stormwater treatment technology. However, their performance under variable drying and wetting conditions have yet to be tested, particularly under a continuous time scale. This paper reports on the clogging behaviour and pollutant removal efficiency of three pervious pavement types over 26 accelerated years. These pavements were monolithic porous asphalt (PA), Permapave (PP) and modular Hydrapave (HP). Over a cycle of 13 days, the period of which was equivalent to the average annual Brisbane, Australia rainfall (1,200 mm), the pavements were randomly dosed with four different flows. Drying events of 3 h duration were simulated during each flow. Inflow and outflow samples were collected and analysed for Total Suspended Solids (TSS), Total Phosphorus (TP) and Total Nitrogen (TN). To evaluate the rate of clogging, a 1 in 5 year Brisbane storm event was simulated in the 6th, 8th, 12th, 16th, 20th and 24th week. Under normal dosing conditions, none of the pavements showed signs of clogging even after 15 years. However, under storm conditions, both PA and HP started to clog after 12 years, while PP showed no signs of clogging after 26 years. The drying and various flow events showed no effects in TSS removal, with all systems achieving a removal of approximately 100%. The average TP removal was 20% for all flows except for low flow, which had a significant amount of leaching over time. Leaching from TN was also observed during all flows except high flow. The TSS, TP and TN results observed during storm events were similar to that of high flow.


2020 ◽  
Author(s):  
Brenda Rosser ◽  
Katie Jones ◽  
Chris Massey ◽  
Salman Ashraf ◽  
Georgia Strawbridge ◽  
...  

&lt;p&gt;The 2016 M&lt;sub&gt;w&lt;/sub&gt; 7.8 Kaikoura Earthquake in Canterbury, New Zealand produced one of the most complex fault ruptures observed in the historical period and produced strong ground shaking. As a consequence, over twenty-nine thousand landslides were triggered over a total area of about 10,000 km&lt;sup&gt;2&lt;/sup&gt; with the majority concentrated in a smaller area of about 3,600 km&lt;sup&gt;2&lt;/sup&gt; (Massey et al 2018). In addition, hillslopes in the affected area were severely damaged by tension cracking and dilation. Large volumes of landslide debris generated during the earthquake remain stored in the landscape and the potential for rainfall to trigger landslides on the failed and partially failed hillslopes is anticipated to be elevated for the foreseeable future. Despite this little is known about the increase in landslide hazard and the timeframe over which this hazard will be elevated.&lt;/p&gt;&lt;p&gt;We used airborne LiDAR captured immediately after the earthquake (November 2016), and at six consecutive dates between November 2017 and April 2019&amp;#160; to develop high resolution surface change models to construct an inventory of rainfall-induced landslides and reactivated landslides following the earthquake. The results were compared with landslide inventories for a series of significant storm events between 1880 and 2019 which were compiled from various sources, including mapping from available aerial photography and satellite imagery collected between 1961 and 2019.&lt;/p&gt;&lt;p&gt;Analysis of the landslide inventories indicates that rainfall triggering thresholds for landslides on these highly cracked and dilated slopes is lower than before the earthquake which has resulted in a significant increase in landslide frequency for a given rainfall amount through the initiation of new landslides on weakened slopes, reactivation of existing landslides and reworking of landslide debris stored on the landscape. Most of the landslides triggered by rainfall following the earthquake were highly mobile debris flows that were strongly coupled to the channel network. Preliminary results suggest that the highest rates of post-earthquake landslide initiation (for both new and reactivated landslides) occurred in the first major storm event following the earthquake and the rate has reduced with time since the earthquake. Maximum landslide size (area) also decreased with time following the earthquake. Quantification of rates of post-EQ rainfall-induced landsliding using LiDAR differencing and aerial photo interpretation will further our understanding of post-earthquake landscape recovery.&lt;/p&gt;


2015 ◽  
Vol 7 (1) ◽  
Author(s):  
G. V. Surkova ◽  
Victor S. Arkhipkin ◽  
Alexander V. Kislov

AbstractThe storm events in the Baltic Sea are examined in connection with the main weather patterns grouped into the circulation types (CTs), and their changes in present climate. A calendar of storms was derived from results of wave model SWAN (Simulating WAves Nearshore) experiments for 1948-2011. Based on this calendar, a catalogue of atmospheric sea level pressure (SLP) fields was prepared for CTs from the NCEP/NCAR dataset. SLP fields were then analyzed using a pattern recognition algorithm which employed empirical orthogonal decomposition and cluster analysis. For every CT we conducted an analysis of their seasonal and interannual changes, along with their role in storm event formation. An increase of the storm CTs’ frequency in the second part of the 20th century was shown to be in a close agreement with teleconnection circulation patterns such as the Arctic Oscillation, North Atlantic Oscillation and the Scandinavian blocking.


Sign in / Sign up

Export Citation Format

Share Document