scholarly journals Sensitivity of modelled North Sea cod larvae transport to vertical behaviour, ocean model resolution and interannual variation in ocean dynamics

2018 ◽  
Vol 75 (7) ◽  
pp. 2413-2424 ◽  
Author(s):  
Kristina Øie Kvile ◽  
Giovanni Romagnoni ◽  
Knut-Frode Dagestad ◽  
Øystein Langangen ◽  
Trond Kristiansen

Abstract Transport with ocean currents affects the spatial distribution and survival of fish eggs and larvae and thereby population connectivity. Biophysical models are commonly used to understand these dynamics. Advancements such as implementing vertical swimming behaviour and higher resolution ocean circulation models are known to improve model performance, however, the relative importance of vertical behaviour vs. ocean model resolution is elusive. Here, we use North Sea cod (Gadus morhua) as a case study to assess how vertical movement, ocean model resolution and interannual variation in ocean dynamics influence drift patterns and population connectivity. We couple a fine (1.6 km, 3 h) and coarser (4 km, 24 h) ocean model to an individual-based model for cod eggs and larvae, and compare simulations with and without vertical movement of eggs and larvae. The results are moderately influenced by vertical movement and ocean model resolution but differ substantially between years. While ocean model resolution is consistently more influential than vertical movement, the effect of vertical movement strongly depends on the spatiotemporal scale of the analyses. This study highlights which aspects of biophysical modelling of connectivity that most critically affect the results, allowing better investing computational resources and proposing goal-based guidelines for future studies.

2020 ◽  
Vol 13 (11) ◽  
pp. 5465-5483
Author(s):  
Clément Bricaud ◽  
Julien Le Sommer ◽  
Gurvan Madec ◽  
Christophe Calone ◽  
Julie Deshayes ◽  
...  

Abstract. Ocean biogeochemical models are key tools for both scientific and operational applications. Nevertheless the cost of these models is often expensive because of the large number of biogeochemical tracers. This has motivated the development of multi-grid approaches where ocean dynamics and tracer transport are computed on grids of different spatial resolution. However, existing multi-grid approaches to tracer transport in ocean modelling do not allow the computation of ocean dynamics and tracer transport simultaneously. This paper describes a new multi-grid approach developed for accelerating the computation of passive tracer transport in the Nucleus for European Modelling of the Ocean (NEMO) ocean circulation model. In practice, passive tracer transport is computed at runtime on a grid with coarser spatial resolution than the hydrodynamics, which reduces the CPU cost of computing the evolution of tracers. We describe the multi-grid algorithm, its practical implementation in the NEMO ocean model, and discuss its performance on the basis of a series of sensitivity experiments with global ocean model configurations. Our experiments confirm that the spatial resolution of hydrodynamical fields can be coarsened by a factor of 3 in both horizontal directions without significantly affecting the resolved passive tracer fields. Overall, the proposed algorithm yields a reduction by a factor of 7 of the overhead associated with running a full biogeochemical model like PISCES (with 24 passive tracers). Propositions for further reducing this cost without affecting the resolved solution are discussed.


2020 ◽  
Author(s):  
Jiang Zhu ◽  
Christopher J. Poulsen

Abstract. Equilibrium climate sensitivity (ECS) has been directly estimated using reconstructions of past climates that are different than today’s. A challenge to this approach is that temperature proxies integrate over the timescales of the fast feedback processes (e.g. changes in water vapor, snow, and clouds) that are captured in ECS as well as the slower feedback processes (e.g. changes in ice sheets and ocean circulation) that are not. A way around this issue is to treat the slow feedbacks as climate forcings and independently account for their impact on global temperature. Here we conduct a suite of Last Glacial Maximum (LGM) simulations using the Community Earth System Model version 1.2 (CESM1.2) to quantify the forcing and efficacy of land ice sheets (LIS) and greenhouse gases (GHG) in order to estimate ECS. Our forcing and efficacy quantification adopts the effective radiative forcing (ERF) and adjustment framework and provides a complete accounting for the radiative, topographic, and dynamical impacts of LIS on surface temperatures. ERF and efficacy of LGM LIS are −3.2 W m−2 and 1.1, respectively. The larger-than-unity efficacy is caused by the relatively larger temperature changes over land and the Northern Hemisphere subtropical oceans than those in response to a doubling of atmospheric CO2. The subtropical SST response is linked to LIS-induced wind changes and feedbacks in ocean-atmosphere coupling and clouds. ERF and efficacy of LGM GHG are −2.8 W m−2 and 0.9, respectively. The lower efficacy is primarily attributed to a smaller cloud feedback at colder temperatures. Our simulations further demonstrate that the direct ECS calculation using the forcing, efficacy, and temperature response in CESM1.2 overestimates the true value in the model by 25 % due to the neglect of slow ocean dynamical feedback. This is supported by the greater cooling (6.8 °C) in a fully coupled LGM simulation than that (5.3 °C) in a slab ocean model simulation with ocean dynamics disabled. The majority (67 %) of the ocean dynamical feedback is attributed to dynamical changes in the Southern Ocean, where interactions between ocean stratification, heat transport, and sea-ice cover are found to amplify the LGM cooling. Our study demonstrates the value of climate models in the quantification of climate forcings and the ocean dynamical feedback, which is necessary for an accurate direct ECS estimation.


2020 ◽  
Author(s):  
Clément Bricaud ◽  
Julien Le Sommer ◽  
Madec Gurvan ◽  
Christophe Calone ◽  
Julie Deshayes ◽  
...  

Abstract. Ocean biogeochemical models are key tools for both scientific and operational applications. Nevertheless the cost of running these models is often expensive because of the large number of biogeochemical tracers. This has motivated the development of multi-grid approaches where ocean dynamics and tracer transport are computed on grids of different spatial resolution. However, existing multi-grid approaches to tracer transport in ocean modelling do not allow to compute ocean dynamics and tracer transport simultaneously. This paper describes a new multi-grid approach developed for accelerating the computation of passive tracer transport in the NEMO ocean circulation model. In practice, passive tracer transport is computed at runtime on a grid with coarser spatial resolution than the hydrodynamics, which allows to reduce the CPU cost of computing the evolution of tracer. We describe the multi-grid algorithm, its practical implementation in the NEMO ocean model, and discuss its performance on the basis of a series of sensitivity experiments with global ocean model configurations. Our experiments confirm that the spatial resolution of hydrodynamical fields can be coarsened by a factor 3 in both horizontal directions without significantly affecting the resolved passive tracer fields. Overall, the proposed algorithm yields a reduction by a factor 7 of the overhead associated with running a full biogeochemical model like PISCES (with 24 passive tracers). Propositions for reducing further this cost without affecting the resolved solution are discussed.


2019 ◽  
pp. 59-66

MODELACIóN NUMÉRICA DE LA CIRCULACIÓN MARINA EN LAS BAHÍAS CALLAO y MIRAFLORES NUMERICAL MODELING OF CIRCULATION IN CALLAO AND MIRAFLORES BAYS Mirian Centeno, Emanuel Guzmán y Paúl García Grupo de Estudio de la Dinámica Marina, Ingeniería Mecánica de Fluidos, Universidad Nacional Mayor de San Marcos, Lima 01, Perú DOI: https://doi.org/10.33017/RevECIPeru2010.0009/ RESUMEN El presente trabajo consiste en estudiar a nivel superficial la circulación marina en las bahías del Callao y Miraflores, mediante el uso del modelo numérico Princeton Ocean Model conocido como POM, el cual es un conjunto de ecuaciones y parámetros que gobiernan la dinámica oceánica. El modelo POM se empleó con la finalidad de caracterizar el patrón de circulación en el área de estudio, analizando la influencia de los forzantes viento y marea (propagación del Norte) en la generación de corrientes marinas, así como los efectos que se producen a causa de la morfología costera y la presencia de la Isla; estos factores influyen en los resultados indicando una complejidad en las corrientes marinas, como la presencia de vórtices dentro de la bahía del Callao, así también la propagación de mareas se manifiestan en el área del puerto del Callao generando las corrientes de flujo y reflujo. Conociendo la circulación marina en las Bahías de Callao y Miraflores, se podrá realizar estudios posteriores de dispersión de contaminante, descargas residuales, derrames accidentales de sustancias, así también estudios de transporte de sedimentos aportados por la presencia de los ríos Rímac y Chillón. Palabras clave: Circulación marina, Princeton Ocean Model, Bahías del Callao y Miraflores ABSTRACT The present work is related to study the surface circulation in Callao and Miraflores bays using Princeton Ocean Model (POM) model, which is a set of equations and parameters that govern the ocean dynamics. POM was used to caracterize the circulation pattern in the study area, analyzing the main influence of wind stress and tide in the generation of currents and the effects occur because of the coastal morphology and the presence of the Island, these factors influence the results indicating a complexity in the ocean currents and the presence of vortices inside the bay of Callao, also tidal propagation manifests in the area of the port of Callao, generating currents ebb and flow. In this way, knowing the ocean circulation in the Callao and Miraflores bays, further studies can be made pollutant dispersion, wastewater discharges, accidental spills of substances, and also sediment transport studies produced by the presence of Rimac and Chillon rivers. Keywords: Marine Circulation, Princeton Ocean Model, Callao y Miraflores bays.


2007 ◽  
Vol 20 (13) ◽  
pp. 2978-2993 ◽  
Author(s):  
Tommy G. Jensen

Abstract Composites of Florida State University winds (1970–99) for four different climate scenarios are used to force an Indian Ocean model. In addition to the mean climatology, the cases include La Niña, El Niño, and the Indian Ocean dipole (IOD). The differences in upper-ocean water mass exchanges between the Arabian Sea and the Bay of Bengal are investigated and show that, during El Niño and IOD years, the average clockwise Indian Ocean circulation is intensified, while it is weakened during La Niña years. As a consequence, high-salinity water export from the Arabian Sea into the Bay of Bengal is enhanced during El Niño and IOD years, while transport of low-salinity waters from the Bay of Bengal into the Arabian Sea is enhanced during La Niña years. This provides a venue for interannual salinity variations in the northern Indian Ocean.


2012 ◽  
Vol 25 (6) ◽  
pp. 1814-1826 ◽  
Author(s):  
Dimitrios Giannakis ◽  
Andrew J. Majda

Abstract An information-theoretic framework is developed to assess the predictive skill and model error in imperfect climate models for long-range forecasting. Here, of key importance is a climate equilibrium consistency test for detecting false predictive skill, as well as an analogous criterion describing model error during relaxation to equilibrium. Climate equilibrium consistency enforces the requirement that long-range forecasting models should reproduce the climatology of prediction observables with high fidelity. If a model meets both climate consistency and the analogous criterion describing model error during relaxation to equilibrium, then relative entropy can be used as an unbiased superensemble measure of the model’s skill in long-range coarse-grained forecasts. As an application, the authors investigate the error in modeling regime transitions in a 1.5-layer ocean model as a Markov process and identify models that are strongly persistent but their predictive skill is false. The general techniques developed here are also useful for estimating predictive skill with model error for Markov models of low-frequency atmospheric regimes.


2013 ◽  
Vol 2013 ◽  
pp. 1-18 ◽  
Author(s):  
Yanyun Liu ◽  
Lian Xie ◽  
John M. Morrison ◽  
Daniel Kamykowski

The regional impact of global climate change on the ocean circulation around the Galápagos Archipelago is studied using the Hybrid Coordinate Ocean Model (HYCOM) configured for a four-level nested domain system. The modeling system is validated and calibrated using daily atmospheric forcing derived from the NCEP/NCAR reanalysis dataset from 1951 to 2007. The potential impact of future anthropogenic global warming (AGW) in the Galápagos region is examined using the calibrated HYCOM with forcing derived from the IPCC-AR4 climate model. Results show that although the oceanic variability in the entire Galápagos region is significantly affected by global climate change, the degree of such effects is inhomogeneous across the region. The upwelling region to the west of the Isabella Island shows relatively slower warming trends compared to the eastern Galápagos region. Diagnostic analysis suggests that the variability in the western Galápagos upwelling region is affected mainly by equatorial undercurrent (EUC) and Panama currents, while the central/east Galápagos is predominantly affected by both Peru and EUC currents. The inhomogeneous responses in different regions of the Galápagos Archipelago to future AGW can be explained by the incoherent changes of the various current systems in the Galápagos region as a result of global climate change.


Author(s):  
Tianyu Wang ◽  
Yan Du ◽  
Minyang Wang

AbstractAn Argo simulation system is used to provide synthetic Lagrangian trajectories based on the Estimating the Circulation and Climate of the Ocean model, Phase II (ECCO2). In combination with ambient Eulerian velocity at the reference layer (1000 m) from the model, quantitative metrics of the Lagrangian trajectory-derived velocities are computed. The result indicates that the biases induced by the derivation algorithm are strongly linked with ocean dynamics. In low latitudes, Ekman currents and vertically sheared geostrophic currents influence both the magnitude and the direction of the derivation velocity vectors. The maximal shear-induced biases exist near the equator with the amplitudes reaching up to about 1.2 cm s-1. The angles of the shear biases are pronounced in the low latitude oceans, ranging from -8° to 8°. Specifically, the study shows an overlooked bias from the float drifting motions that mainly occurs in the western boundary current and Antarctic circumpolar current (ACC) regions. In these regions, a recently reported horizontal acceleration measured via Lagrangian floats is significantly associated with the strong eddy-jet interactions. The acceleration could induce an overestimation of Eulerian current velocity magnitudes. For the common Argo floats with a 9-day float parking period, the derivation speed biases induced by velocity acceleration would be as large as 3 cm s-1, approximately 12% of the ambient velocity. It might have implications to map the mean mid-depth ocean currents from Argo trajectories, as well as understand the dynamics of eddy-jet interactions in the ocean.


Ocean Science ◽  
2015 ◽  
Vol 11 (6) ◽  
pp. 879-896 ◽  
Author(s):  
M. Haller ◽  
F. Janssen ◽  
J. Siddorn ◽  
W. Petersen ◽  
S. Dick

Abstract. For understanding and forecasting of hydrodynamics in coastal regions, numerical models have served as an important tool for many years. In order to assess the model performance, we compared simulations to observational data of water temperature and salinity. Observations were available from FerryBox transects in the southern North Sea and, additionally, from a fixed platform of the MARNET network. More detailed analyses have been made at three different stations, located off the English eastern coast, at the Oyster Ground and in the German Bight. FerryBoxes installed on ships of opportunity (SoO) provide high-frequency surface measurements along selected tracks on a regular basis. The results of two operational hydrodynamic models have been evaluated for two different time periods: BSHcmod v4 (January 2009 to April 2012) and FOAM AMM7 NEMO (April 2011 to April 2012). While they adequately simulate temperature, both models underestimate salinity, especially near the coast in the southern North Sea. Statistical errors differ between the two models and between the measured parameters. The root mean square error (RMSE) of water temperatures amounts to 0.72 °C (BSHcmod v4) and 0.44 °C (AMM7), while for salinity the performance of BSHcmod is slightly better (0.68 compared to 1.1). The study results reveal weaknesses in both models, in terms of variability, absolute levels and limited spatial resolution. Simulation of the transition zone between the coasts and the open sea is still a demanding task for operational modelling. Thus, FerryBox data, combined with other observations with differing temporal and spatial scales, can serve as an invaluable tool not only for model evaluation, but also for model optimization by assimilation of such high-frequency observations.


2005 ◽  
Vol 35 (1) ◽  
pp. 13-32 ◽  
Author(s):  
A. Birol Kara ◽  
Alan J. Wallcraft ◽  
Harley E. Hurlburt

Abstract A 1/25° × 1/25° cos(lat) (longitude × latitude) (≈3.2-km resolution) eddy-resolving Hybrid Coordinate Ocean Model (HYCOM) is introduced for the Black Sea and used to examine the effects of ocean turbidity on upper-ocean circulation features including sea surface height and mixed layer depth (MLD) on annual mean climatological time scales. The model is a primitive equation model with a K-profile parameterization (KPP) mixed layer submodel. It uses a hybrid vertical coordinate that combines the advantages of isopycnal, σ, and z-level coordinates in optimally simulating coastal and open-ocean circulation features. This model approach is applied to the Black Sea for the first time. HYCOM uses a newly developed time-varying solar penetration scheme that treats attenuation as a continuous quantity. This scheme includes two bands of solar radiation penetration, one that is needed in the top 10 m of the water column and another that penetrates to greater depths depending on the turbidity. Thus, it is suitable for any ocean general circulation model that has fine vertical resolution near the surface. With this scheme, the optical depth–dependent attenuation of subsurface heating in HYCOM is given by monthly mean fields for the attenuation of photosynthetically active radiation (kPAR) during 1997–2001. These satellite-based climatological kPAR fields are derived from Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) data for the spectral diffuse attenuation coefficient at 490 nm (k490) and have been processed to have the smoothly varying and continuous coverage necessary for use in the Black Sea model applications. HYCOM simulations are driven by two sets of high-frequency climatological forcing, but no assimilation of ocean data is then used to demonstrate the importance of including spatial and temporal varying attenuation depths for the annual mean prediction of upper-ocean quantities in the Black Sea, which is very turbid (kPAR > 0.15 m−1, in general). Results are reported from three model simulations driven by each atmospheric forcing set using different values for the kPAR. A constant solar-attenuation optical depth of ≈17 m (clear water assumption), as opposed to using spatially and temporally varying attenuation depths, changes the surface circulation, especially in the eastern Black Sea. Unrealistic sub–mixed layer heating in the former results in weaker stratification at the base of the mixed layer and a deeper MLD than observed. As a result, the deep MLD off Sinop (at around 42.5°N, 35.5°E) weakens the surface currents regardless of the atmospheric forcing used in the model simulations. Using the SeaWiFS-based monthly turbidity climatology gives a shallower MLD with much stronger stratification at the base and much better agreement with observations. Because of the high Black Sea turbidity, the simulation with all solar radiation absorbed at the surface case gives results similar to the simulations using turbidity from SeaWiFS in the annual means, the aspect of the results investigated in this paper.


Sign in / Sign up

Export Citation Format

Share Document