scholarly journals Epidemiology of Severe Acute Respiratory Syndrome Coronavirus 2 Emergence Amidst Community-Acquired Respiratory Viruses

2020 ◽  
Vol 222 (8) ◽  
pp. 1270-1279 ◽  
Author(s):  
Karoline Leuzinger ◽  
Tim Roloff ◽  
Rainer Gosert ◽  
Kirstin Sogaard ◽  
Klaudia Naegele ◽  
...  

Abstract Background Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in China as the cause of coronavirus disease 2019 in December 2019 and reached Europe by late January 2020, when community-acquired respiratory viruses (CARVs) are at their annual peak. We validated the World Health Organization (WHO)–recommended SARS-CoV-2 assay and analyzed the epidemiology of SARS-CoV-2 and CARVs. Methods Nasopharyngeal/oropharyngeal swabs (NOPS) from 7663 patients were prospectively tested by the Basel S-gene and WHO-based E-gene (Roche) assays in parallel using the Basel N-gene assay for confirmation. CARVs were prospectively tested in 2394 NOPS by multiplex nucleic acid testing, including 1816 (75%) simultaneously for SARS-CoV-2. Results The Basel S-gene and Roche E-gene assays were concordant in 7475 cases (97.5%) including 825 (11%) SARS-CoV-2 positives. In 188 (2.5%) discordant cases, SARS-CoV-2 loads were significantly lower than in concordant positive ones and confirmed in 105 (1.4%). Adults were more frequently SARS-CoV-2 positive, whereas children tested more frequently CARV positive. CARV coinfections with SARS-CoV-2 occurred in 1.8%. SARS-CoV-2 replaced CARVs within 3 weeks, reaching 48% of all detected respiratory viruses followed by rhinovirus/enterovirus (13%), influenza virus (12%), coronavirus (9%), respiratory syncytial virus (6%), and metapneumovirus (6%). Conclusions Winter CARVs were dominant during the early SARS-CoV-2 pandemic, impacting infection control and treatment decisions, but were rapidly replaced, suggesting competitive infection. We hypothesize that preexisting immune memory and innate immune interference contribute to the different SARS-CoV-2 epidemiology among adults and children.

2020 ◽  
Author(s):  
Karoline Leuzinger ◽  
Tim Roloff ◽  
Rainer Gosert ◽  
Kirstine Soegaard ◽  
Klaudia Naegele ◽  
...  

Background. SARS-CoV-2 emerged in China in December 2019 as new cause of severe viral pneumonia (CoVID-19) reaching Europe by late January 2020. We validated the WHO-recommended assay and describe the epidemiology of SARS-CoV-2 and community-acquired respiratory viruses (CARVs). Methods. Naso-oropharyngeal swabs (NOPS) from 7663 individuals were prospectively tested by the Basel-S-gene and the WHO-based E-gene-assay (Roche) using Basel-N-gene-assay for confirmation. CARVs were tested in 2394 NOPS by multiplex-NAT, including 1816 together with SARS-CoV-2. Results. Basel-S-gene and Roche-E-gene-assays were concordant in 7475 cases (97.5%) including 825 (11%) positive samples. In 188 (2.5%) discordant cases, SARS-CoV-2 loads were significantly lower than in concordant positive ones and confirmed in 105 NOPS. Adults were more likely to test positive for SARS-CoV-2, while children were more likely to test CARV-positive. CARV co-infections with SARS-CoV-2 occurred in 1.8%. SARS-CoV-2 replaced other CARVs within 3 weeks reaching 48% of all detected respiratory viruses followed by rhino/enterovirus (13%), influenzavirus (12%), coronavirus (9%), respiratory syncytial (6%) and metapneumovirus (6%). Conclusions. The differential diagnosis for respiratory infections was broad during the early pandemic, affecting infection control and treatment decisions. We discuss the role of pre-existing immunity and competitive CARV replication for the epidemiology of SARS-CoV-2 infection among adults and children.


Author(s):  
Mohammad Rubayet Hasan ◽  
Sathyavathi Sundararaju ◽  
Chidambaram Manickam ◽  
Faheem Mirza ◽  
Hamad Al-Hail ◽  
...  

Since the beginning of the coronavirus disease 2019 (COVID-19) pandemic, laboratory testing to detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by real-time reverse transcription PCR (RT-qPCR) has played a central role in mitigating the spread of the virus (1). Soon after the viral genome sequences were available, several RT-qPCR assays were developed and made available by World Health Organization (WHO) for public use (https://www.who.int/docs/default-source/coronaviruse/whoinhouseassays.pdf). The primer and probe sequences for these assays were chosen from multiple target genes within the viral genome such as the E gene, RdRp gene, ORF1ab and N gene. Many commercial and laboratory-developed assays were developed for SARS-CoV-2 detection based on these primer and probe sequences. The large-scale sustained person-to-person transmission of SARS-CoV-2 has led to many mutational events, some of which may affect the sensitivity and specificity of available PCR assays (2). Recently, mutations in the E gene (C26340T) and N gene (C29200T) were reported affecting the detection of target genes by two commercial assays in 8 and 1 patients, respectively. Interestingly, both mutations are of C>T type, a common single nucleotide polymorphism (SNP) that may be associated with strong host cell mRNA editing mechanisms known as APOBEC cytidine deaminase (3, 4). Another study found a G to U substitution in position 29140 that affected the sensitivity of detection of N gene-based assays (5). Here we report a novel N gene mutation (C29200A) seen in 3 patients, which affected the detection of SARS-CoV-2 N gene by a commercial assay.


Author(s):  
Elsharif A. Bazie ◽  
Abdulkarim Alanazi ◽  
Wejdan Hamed Abdullah Alshammari ◽  
Fahad Mishal Alharbi ◽  
Faisal Ahmed Alghamdi

Coronaviruses (CoV) are RNA respiratory viruses that present with a wide range of symptomatology which range from common cold to severe diseases such as Middle East Respiratory Syndrome (MERS-CoV) and Severe Acute Respiratory Syndrome (SARS-CoV). In December 2019 a new strain was discovered in China named Severe Acute Respiratory Syndrome Corona Virus 2 (SARS-CoV-2), named “COVID-19” by World Health Organization (WHO). Objective: To study the prevalence and clinical presentation of COVID-19 among children attended pediatrics emergency department. Result: from 1st March to 30th of June 2020. During the study period, a total of 223 patients with age between 16 days and 12 years were diagnosed as positive COVID-19. Male were 52%. Fever was found in 39.9%, cough in 14.3%, and diarrhea in 3.6%. Conclusion: our study gives a clue to the clinical presentation of COVID-19 in pediatric populations.


Author(s):  
Yu Jin Jung ◽  
Gun-Soo Park ◽  
Jun Hye Moon ◽  
Keunbon Ku ◽  
Seung-Hwa Beak ◽  
...  

AbstractCoronavirus disease 2019 (COVID-19) is newly emerging human infectious diseases, which is caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2, also previously known as 2019-nCoV). Within two months of the outbreak, more than 80,000 cases of COVID-19 have been confirmed worldwide. Since the human to human transmission occurred easily and the human infection is rapidly increasing, the sensitive and early diagnosis is essential to prevent the global outbreak. Recently, World Health Organization (WHO) announced various primer and probe sets for SARS-CoV-2 previously developed in China, Germany, Hong Kong, Japan, Thailand, and USA. In this study, we compared the ability to detect SARS-CoV-2 RNA among the seven primer-probe sets for N gene and the three primer-probe sets for Orf1 gene. The result of the comparative analysis represented that the ‘2019-nCoV_N2, N3’ of USA and the ‘ORF1ab’ of China are the most sensitive primer-probe sets for N and Orf1 genes, respectively. Therefore, the appropriate combination from ORF1ab (China), 2019-nCoV_N2, N3 (USA), and NIID_2019-nCOV_N (Japan) sets should be selected for the sensitive and reliable laboratory confirmation of SARS-CoV-2.


2021 ◽  
Vol 156 (Supplement_1) ◽  
pp. S126-S127
Author(s):  
S Q Zia ◽  
H Mehrotra ◽  
R J Tibbetts ◽  
L Samuel

Abstract Introduction/Objective Following the definition of SARS-CoV2 outbreak as a pandemic by WHO, FDA gave EUA approval to the CDC real time polymerase chain reaction (PCR) assay and soon to other vendors to increase test availability. Most of testing platforms are PCR based, which test for multiple gene targets. We aimed to compare distribution of crossing threshold (cT) values of Diasorin (DIA), NeuMoDX (NDX) and Cepheid GenXpert (GX) for symptomatic and asymptomatic patients and assess performance of individual gene targets within the assays. We also correlated cT values with time from symptom onset. Methods/Case Report Retrospective review of medical and laboratory records of patients who tested positive for SARS-CoV2 between 08/01/2020 and 10/10/2020 on DIA, NDX, and GX platforms. Results (if a Case Study enter NA) We included 212 patients in our study. Days since symptom onset included 1 to 16 days. For DIA, mean Ct values for 46 symptomatic patients were 21.75 (S gene) and 22.74 (ORF1 gene); whereas 23.49 (S gene) and 25.49 (ORF1 gene) for 12 asymptomatic patients. Similarly, on NDX mean was 22.21 (N gene) and 23.13 (NSP2 gene) for 69 symptomatic, though 28.09 (N gene) and 28.61 (NSP2 gene) for 35 asymptomatic patients. GX manifested mean Ct value of 27.13 (E gene) and 31.22 (N2 gene) for 19 symptomatic; while 33.85 (E gene) and 36.42 (N2 gene) for 31 asymptomatic patients. Correlation coefficient for cT values versus days since symptom onset are DIA (r2 0.19), NDX (r2 0.22), and GX (r2 0.02). Conclusion The difference in cT values was statistically significant for symptomatic versus asymptomatic patients. There was positive correlation between days since symptom onset and cT values for DIA and NDX but not for GX, which may be due to difference in population tested in these platforms. These observations may be used to predict viral load and thus infectivity of patients who test positive for SARS-CoV2.


2014 ◽  
Vol 60 (3) ◽  
pp. 276-282 ◽  
Author(s):  
Saulo Duarte Passos ◽  
Rosa Estela Gazeta ◽  
Ana Paula Felgueiras ◽  
Patrícia Costa Beneli ◽  
Micheline de S. Z. S. Coelho

To review if pollution and climate changes can influence respiratory tract infections in children. Data source: articles published on the subject in PubMed, SciELO, Bireme, EBSCO and UpTodate were reviewed. The following inclusion criteria were considered: scientific papers between 2002 and 2012, study design, the pediatric population, reference documents such as the CETESB and World Health Organization Summary of the data: We analyzed research that correlated respiratory viruses and climate and/or pollution changes. Respiratory syncytial virus has been the virus related most to changes in climate and humidity. Other "old and new" respiratory viruses such as Human Bocavirus, Metapneumovirus, Parechovirus and Parainfuenza would need to be investigated owing to their clinical importance. Although much has been studied with regard to the relationship between climate change and public health, specific studies about its influence on children's health remain scarce.


2020 ◽  
Vol 11 (SPL1) ◽  
pp. 748-752
Author(s):  
Swapnali Khabade ◽  
Bharat Rathi ◽  
Renu Rathi

A novel, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), causes severe acute respiratory syndrome and spread globally from Wuhan, China. In March 2020 the World Health Organization declared the SARS-Cov-2 virus as a COVID- 19, a global pandemic. This pandemic happened to be followed by some restrictions, and specially lockdown playing the leading role for the people to get disassociated with their personal and social schedules. And now the food is the most necessary thing to take care of. It seems the new challenge for the individual is self-isolation to maintain themselves on the health basis and fight against the pandemic situation by boosting their immunity. Food organised by proper diet may maintain the physical and mental health of the individual. Ayurveda aims to promote and preserve the health, strength and the longevity of the healthy person and to cure the disease by properly channelling with and without Ahara. In Ayurveda, diet (Ahara) is considered as one of the critical pillars of life, and Langhana plays an important role too. This article will review the relevance of dietetic approach described in Ayurveda with and without food (Asthavidhi visheshaytana & Lanhgan) during COVID-19 like a pandemic.


A novel coronavirus first broke out in Wuhan, China in December, 2019 has been declared a pandemic by WHO on March, 2020. This work aimed to search for probable ancestor of the virus, phylogeny of 2019-nCoVs and similar SL-CoVs based on the whole genome, M, N, ORF1ab, orf3a, and S gene sequences (n=84) obtained from GenBank using BLASTn software in the NCBI was done. Nucleotides of ORF3a and S-genes among 2019-nCoVs are identical, whereas its similar on the whole genome (99.9-100%), M-gene (99.7-100%), N-gene (99.9-100%) and ORF1ab-gene (99.7-100%). nCoVs are similar to bat CoV/RaTG13 on the whole genome (96.2%), M-gene (95.0%), N-gene (97%), ORF1ab-gene (95.3%), ORF3a-gene (99.1%) and S-gene (90.7%). Likewise, nCoVs exhibited homology to bat-CoVZXC21 on M-gene (93.2%), N-gene (91.5%), ORF1ab-gene (93.1%) and ORF3a-gene (94.4%). The emergent viruses shared identity to bat-CoVZC45 on N-gene (91.3%), ORF1ab-gene (92.8%) and ORF3a-gene (94.0%). In addition, pangolin-CoV/MP789 exhibited common sequences on M-gene (91.0%), N-gene (96.3%) and ORF3a-gene (93.3%) to nCoV. Furthermore, pangolin-CoV/MP789 is analogous to bat CoV/RaTG13 (91.3%) and bat-SL-CoVZXC21 (92.2%) on M-gene and to bat CoV/RaTG13 (94.8%) on N-gene. Nevertheless, nCoVs are distinct from the previously identified SL-CoVs of human origin. The present analysis indicates that nCoVs may have transmitted from bats, pangolin and/or unidentified hosts.


2020 ◽  
Vol 18 ◽  
Author(s):  
Rina Das ◽  
Dinesh Kumar Mehta ◽  
Meenakshi Dhanawat

Abstract:: A novel virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), appeared and expanded globally by the end of year in 2019 from Wuhan, China, causing severe acute respiratory syndrome. During its initial stage, the disease was called the novel coronavirus (2019-nCoV). It was named COVID-19 by the World Health Organization (WHO) on 11 February 2020. The WHO declared worldwide the SARS-CoV-2 virus a pandemic on March 2020. On 30 January 2020 the first case of Corona Virus Disease 2019 (COVID-19) was reported in India. Now in current situation the virus is floating in almost every part of the province and rest of the globe. -: On the basis of novel published evidences, we efficiently summarized the reported work with reference to COVID-19 epidemiology, pathogen, clinical symptoms, treatment and prevention. Using several worldwide electronic scientific databases such as Pubmed, Medline, Embase, Science direct, Scopus, etc were utilized for extensive investigation of relevant literature. -: This review is written in the hope of encouraging the people successfully with the key learning points from the underway efforts to perceive and manage SARS-CoV-2, suggesting sailent points for expanding future research.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Rafik Dey ◽  
Melanie A. Folkins ◽  
Nicholas J. Ashbolt

AbstractHuman respiratory syncytial virus (RSV) is a major cause of acute respiratory tract infections in children and immunocompromised adults worldwide. Here we report that amoebae-release respirable-sized vesicles containing high concentrations of infectious RSV that persisted for the duration of the experiment. Given the ubiquity of amoebae in moist environments, our results suggest that extracellular amoebal-vesicles could contribute to the environmental persistence of respiratory viruses, including potential resistance to disinfection processes and thereby offering novel pathways for viral dissemination and transmission.


Sign in / Sign up

Export Citation Format

Share Document