Change in Antibiotic Use in Secondary and Tertiary Hospitals Nationwide After a National Antimicrobial Stewardship Campaign Was Launched in China, 2011–2016: An Observational Study

2020 ◽  
Vol 221 (Supplement_2) ◽  
pp. S148-S155 ◽  
Author(s):  
Yonghong Xiao ◽  
Ping Shen ◽  
Beiwen Zheng ◽  
Kai Zhou ◽  
Qixia Luo ◽  
...  

Abstract Background An antimicrobial stewardship campaign was launched in 2011 by the Ministry of Health. This study aimed to assess the achievements and trends in the clinical use of antibiotics in secondary and tertiary hospitals following this campaign in China. Methods This observational study analyzed nationwide hospital antibiotic procurement and consumption data and antibiotic-resistance surveillance data based on claims filed in 2010–2016. Results After a 6-year national campaign, the proportion of outpatients and surgical patients who received antibiotic treatment decreased from 19.5% to 8.5% and from 97.9% to 38.3%, respectively. The intensity of antibiotic use among inpatients decreased from 85.3±29.8 defined daily dosage (DDD) per 100 patient days to 48.5±8.0 DDD per 100 patient days. Moreover, the antibiotic procurement expenditure among hospitals declined from 22.3% of total drug procurement costs in 2010 to 12.1% in 2016, although total drug procurement costs doubled during that time. The incidence of methicillin-resistant Staphylococcus aureus isolates also dropped (from 54.4% in 2010 to 34.4% in 2016), as did the proportion of carbapenem-resistant Pseudomonas aeruginosa isolates (from 30.8% to 22.3%). Conclusions The 6-year campaign successfully reduced antibiotic consumption and irrational drug use in Chinese hospitals which was associated with declines in the prevalence of common antibiotic-resistant bacteria.

Author(s):  
Ana Rita Almeida ◽  
Marta Tacão ◽  
Joana Soares ◽  
Inês Domingues ◽  
Isabel Henriques

The emergence of antibiotic-resistant pathogens due to worldwide antibiotic use is raising concern in several settings, including aquaculture. In this work, the selection of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) was evaluated after exposure of zebrafish to oxytetracycline (OTC) for two months, followed by a recovery period. The selection of ARB in water and fish was determined using selective media. The abundance of tetA genes was estimated through qPCR. Higher prevalence of ARB was measured in all samples exposed to the antibiotic when compared to control samples, although statistical significance was only achieved five days after exposure. Isolates recovered from samples exposed to the antibiotic were affiliated with Pseudomonas and Stenotrophomonas. Various antibiotic susceptibility profiles were detected and 37% of the isolates displayed multidrug resistance (MDR). The selection of the tetA gene was confirmed by qPCR at the highest OTC concentration tested. Two MDR isolates, tested using zebrafish embryos, caused significant mortality, indicating a potential impact on fish health and survival. Overall, our work highlights the potential impact of antibiotic contamination in the selection of potential pathogenic ARB and ARGS.


Antibiotics ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 495
Author(s):  
Masateru Nishiyama ◽  
Susan Praise ◽  
Keiichi Tsurumaki ◽  
Hiroaki Baba ◽  
Hajime Kanamori ◽  
...  

There is increasing attention toward factors that potentially contribute to antibiotic resistance (AR), as well as an interest in exploring the emergence and occurrence of antibiotic resistance bacteria (ARB). We monitored six ARBs that cause hospital outbreaks in wastewater influent to highlight the presence of these ARBs in the general population. We analyzed wastewater samples from a municipal wastewater treatment plant (MWWTP) and hospital wastewater (HW) for six species of ARB: Carbapenem-resistant Enterobacteria (CARBA), extended-spectrum β-lactamase producing Enterobacteria (ESBL), multidrug-resistant Acinetobacter (MDRA), multidrug-resistant Pseudomonas aeruginosa (MDRP), methicillin-resistant Staphylococcus aureus (MRSA), and vancomycin-resistant Enterococci (VRE). We registered a high percentage of ARBs in MWWTP samples (>66%) for all ARBs except for MDRP, indicating a high prevalence in the population. Percentages in HW samples were low (<78%), and no VRE was detected throughout the study. CARBA and ESBL were detected in all wastewater samples, whereas MDRA and MRSA had a high abundance. This result demonstrated the functionality of using raw wastewater at MWWTP to monitor the presence and extent of ARB in healthy populations. This kind of surveillance will contribute to strengthening the efforts toward reducing ARBs through the detection of ARBs to which the general population is exposed.


Author(s):  
Dana Trevas ◽  
Angela M Caliendo ◽  
Kimberly Hanson ◽  
Jaclyn Levy ◽  
Christine C Ginocchio

Abstract Uptake of existing diagnostics to identify infections more accurately could minimize unnecessary antibiotic use and decrease the growing threat of antibiotic resistance. The Infectious Diseases Society of America (IDSA) and the Presidential Advisory Council on Combating Antibiotic-Resistant Bacteria (PACCARB) agree that, to improve uptake of existing diagnostics, healthcare providers, health systems, and payors all need better clinical and economic outcomes data to support use of diagnostic tests over empiric use of antibiotics, providers need better tools and education about diagnostic tests, and diagnostics developers need federal funding in the absence of a viable diagnostics market. Recommendations from PACCARB and the IDSA are amplified. Incentives for—and challenges to—diagnostics research, development, and uptake are summarized. Advocacy opportunities are given for infectious disease professionals to join the fight against antimicrobial resistance.


2019 ◽  
Vol 476 (5) ◽  
pp. 795-808 ◽  
Author(s):  
Jyoti Singh Tomar ◽  
Rama Krishna Peddinti ◽  
Ramakrishna V. Hosur

AbstractAntibiotic-resistant bacteria pose the greatest threat to human health. Among the list of such bacteria released by WHO, carbapenem-resistant Acinetobacter baumannii, for which almost no treatment exists, tops the list. A. baumannii is one of the most troublesome ESKAPE pathogens and mechanisms that have facilitated its rise as a successful pathogen are not well studied. Efforts in this direction have resulted in the identification of Hpa2-Ab, an uncharacterized histone acetyltransferase enzyme of GNAT superfamily. Here, we show that Hpa2-Ab confers resistance against aminoglycoside antibiotics using Escherichia coli DH5α strains in which Hpa2 gene is expressed. Resistivity for aminoglycoside antibiotics is demonstrated with the help of CLSI-2010 and KB tests. Isothermal titration calorimetry, MALDI and acetylation assays indicate that conferred resistance is an outcome of evolved antibiotic acetylation capacity in this. Hpa2 is known to acetylate nuclear molecules; however, here it is found to cross its boundary and participate in other functions. An array of biochemical and biophysical techniques were also used to study this protein, which demonstrates that Hpa2-Ab is intrinsically oligomeric in nature, exists primarily as a dimer and its interface is mainly stabilized by hydrophobic interactions. Our work demonstrates an evolved survival strategy by A. baumannii and provides insights into the mechanism that facilitates it to rise as a successful pathogen.


2013 ◽  
Vol 4 (4) ◽  
pp. 5 ◽  
Author(s):  
Usman Hadi ◽  
Kuntaman Kuntaman ◽  
Mariyatul Qiptiyah ◽  
Hari Paraton

Background: Based on the results Antimicrobial Resistance in Indonesia: prevalence and prevention-study (AMRIN-study), the Ministry of Health of Indonesia in 2005 began a program antibiotic resistance control (PPRA) in some government hospitals, and is currently developing to all government teaching hospitals in Indonesia. Aim: The core activities of the PPRA are to implement standardized surveillance emergence of antibiotic resistant bacteria, and the surveillance of antibiotic use in terms of quantity and quality. Method: Our research in the years 2003 showed the proportion of antibiotic use 84% of patients in a hospital. The use of inappropriate antibiotics was very high, 42% no indication. Result: In 2012 the results of surveillance showed decline of inappropriate use of antibiotic, but prevalence extended-spectrum b-lactamase (ESBL)-producing K.pneumoniae (58%), and E.coli (52%) andmethicillin-resistant S.aures (MRSA) (24%) were increasing. Conclusion: It was needed to implement the most appropriate programs to prevent the growth and development of bacteria resistant to antibiotics.


2018 ◽  
Vol 39 (8) ◽  
pp. 941-946 ◽  
Author(s):  
Bradley J. Langford ◽  
Julie Hui-Chih Wu ◽  
Kevin A. Brown ◽  
Xuesong Wang ◽  
Valerie Leung ◽  
...  

AbstractObjectivesAntibiotic use varies widely between hospitals, but the influence of antimicrobial stewardship programs (ASPs) on this variability is not known. We aimed to determine the key structural and strategic aspects of ASPs associated with differences in risk-adjusted antibiotic utilization across facilities.DesignObservational study of acute-care hospitals in Ontario, CanadaMethodsA survey was sent to hospitals asking about both structural (8 elements) and strategic (32 elements) components of their ASP. Antibiotic use from hospital purchasing data was acquired for January 1 to December 31, 2014. Crude and adjusted defined daily doses per 1,000 patient days, accounting for hospital and aggregate patient characteristics, were calculated across facilities. Rate ratios (RR) of defined daily doses per 1,000 patient days were compared for hospitals with and without each antimicrobial stewardship element of interest.ResultsOf 127 eligible hospitals, 73 (57%) participated in the study. There was a 7-fold range in antibiotic use across these facilities (min, 253 defined daily doses per 1,000 patient days; max, 1,872 defined daily doses per 1,000 patient days). The presence of designated funding or resources for the ASP (RRadjusted, 0·87; 95% CI, 0·75–0·99), prospective audit and feedback (RRadjusted, 0·80; 95% CI, 0·67–0·96), and intravenous-to-oral conversion policies (RRadjusted, 0·79; 95% CI, 0·64–0·99) were associated with lower risk-adjusted antibiotic use.ConclusionsWide variability in antibiotic use across hospitals may be partially explained by both structural and strategic ASP elements. The presence of funding and resources, prospective audit and feedback, and intravenous-to-oral conversion should be considered priority elements of a robust ASP.


2018 ◽  
Vol 243 (6) ◽  
pp. 538-553 ◽  
Author(s):  
Nathan P Coussens ◽  
Ashley L Molinaro ◽  
Kayla J Culbertson ◽  
Tyler Peryea ◽  
Gergely Zahoránszky-Köhalmi ◽  
...  

The increasing emergence of multidrug-resistant bacteria is recognized as a major threat to human health worldwide. While the use of small molecule antibiotics has enabled many modern medical advances, it has also facilitated the development of resistant organisms. This minireview provides an overview of current small molecule drugs approved by the US Food and Drug Administration (FDA) for use in humans, the unintended consequences of antibiotic use, and the mechanisms that underlie the development of drug resistance. Promising new approaches and strategies to counter antibiotic-resistant bacteria with small molecules are highlighted. However, continued public investment in this area is critical to maintain an edge in our evolutionary “arms race” against antibiotic-resistant microorganisms. Impact statement The alarming increase in antibiotic-resistant microorganisms is a rapidly emerging threat to human health throughout the world. Historically, small molecule drugs have played a major role in controlling bacterial infections and they continue to offer tremendous potential in countering resistant organisms. This minireview provides a broad overview of the relevant issues, including the diversity of FDA-approved small molecule drugs and mechanisms of drug resistance, unintended consequences of antibiotic use, the current state of development for small molecule antibacterials and financial challenges that impact progress towards novel therapies. The content will be informative to diverse stakeholders, including clinicians, basic scientists, translational scientists and policy makers, and may be used as a bridge between these key players to advance the development of much-needed therapeutics.


mBio ◽  
2018 ◽  
Vol 9 (3) ◽  
Author(s):  
Roberto Adamo ◽  
Immaculada Margarit

ABSTRACT Antibiotics and vaccines have greatly impacted human health in the last century by dramatically reducing the morbidity and mortality associated with infectious diseases. The recent challenge posed by the emergence of multidrug-resistant bacteria could possibly be addressed by novel immune prophylactic and therapeutic approaches. Among the newly threatening pathogens, Klebsiella pneumoniae is particularly worrisome in the nosocomial setting, and its surface polysaccharides are regarded as promising antigen candidates. The majority of Klebsiella carbapenem-resistant strains belong to the sequence type 158 (ST258) lineage, with two main clades expressing capsular polysaccharides CPS1 and CPS2. In a recent article, S. D. Kobayashi and colleagues (mBio 9:e00297-18, 2018, https://doi.org/10.1128/mBio.00297-18) show that CPS2-specific IgGs render ST258 clade 2 bacteria more sensitive to human serum and phagocytic killing. E. Diago-Navarro et al. (mBio 9:e00091-18, 2018, https://doi.org/10.1128/mBio.00091-18) generated two murine monoclonal antibodies recognizing distinct glycotopes of CPS2 that presented functional activity against multiple ST258 strains. These complementary studies represent a step toward the control of this dangerous pathogen.


Sign in / Sign up

Export Citation Format

Share Document