Pervasive cytoquakes in the actomyosin cortex across cell types and substrate stiffness

2021 ◽  
Author(s):  
Yu Shi ◽  
Shankar Sivarajan ◽  
Katherine M Xiang ◽  
Geran M Kostecki ◽  
Leslie Tung ◽  
...  

Abstract The actomyosin cytoskeleton enables cells to resist deformation, crawl, change their shape and sense their surroundings. Despite decades of study, how its molecular constituents can assemble together to form a network with the observed mechanics of cells remains poorly understood. Recently, it has been shown that the actomyosin cortex of quiescent cells can undergo frequent, abrupt reconfigurations and displacements, called cytoquakes. Notably, such fluctuations are not predicted by current physical models of actomyosin networks, and their prevalence across cell types and mechanical environments has not previously been studied. Using micropost array detectors, we have performed high-resolution measurements of the dynamic mechanical fluctuations of cells’ actomyosin cortex and stress fiber networks. This reveals cortical dynamics dominated by cytoquakes—intermittent events with a fat-tailed distribution of displacements, sometimes spanning microposts separated by 4 μm, in all cell types studied. These included 3T3 fibroblasts, where cytoquakes persisted over substrate stiffnesses spanning the tissue-relevant range of 4.3 kPa–17 kPa, and primary neonatal rat cardiac fibroblasts and myofibroblasts, human embryonic kidney cells and human bone osteosarcoma epithelial (U2OS) cells, where cytoquakes were observed on substrates in the same stiffness range. Overall, these findings suggest that the cortex self-organizes into a marginally stable mechanical state whose physics may contribute to cell mechanical properties, active behavior and mechanosensing.

Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
Kota Tonegawa ◽  
Hiroyuki Nakayama ◽  
Hiromi Igarashi ◽  
Sachi Matsunami ◽  
Nao Hayamizu ◽  
...  

Background: Cardiac fibroblasts (CFs) are the most prevalent cell types in heart and play important roles in cardiac remodeling. While the roles of β-adrenergic receptor (βAR) signaling in cardiomyocytes (CMs) are well characterized, those in CFs remain to be elusive due to lack of convenient method to assess those signaling. There are three subtypes of, βAR β1, β2, β3 and β2AR is reported to be expressed in CFs by which enhances cell proliferation and production of inflammatory cytokines. Clinical efficacy of non-selective β blocker carvedilol for heart failure (HF) surpasses that of β1 selective blocker metoprolol, suggesting critical roles of β2 and β3AR in the pathogenesis of HF. Objective: To elucidate the signaling downstream βARs in CFs in heart. Methods and Results: Caveolae is an important microdomain for signal transduction, such as βAR, present in CMs or CFs. To elucidate βAR signaling of caveolae in CFs, we generated a fusion protein composed of phospholamban (PLN) and caveolin3 (Cav3) representing PKA activation as phosphorylation at S16 of PLN and CaMKII as that at T17 in caveolae. Thus, activation of PKA or CaMKII is detectable by anti-phospho-S16 or T17 antibody, respectively. In neonatal rat CFs (NRCFs) infected PLN-Cav3 adenovirus, stimulation by isoproterenol (ISO) led to enhanced phosphorylation of both S16 and T17, suggesting PKA and CaMKII activation in caveolae of CFs. RT-PCR analyses showed β2AR and β3AR were present in NRCFs. Stimulation with β2AR selective agonists activated both PKA and CaMKII, while β3AR elicited solely PKA activation, analyzed by using β3AR selective agonist/antagonist. In addition, in order to examine the significance of βAR stimulation for heart failure, we administered ISO continuously for two weeks in β2ARKO mice. As a result, fibrosis was suppressed in β2ARKO mice compared with wild-type mice (0.35% vs 2.37%, p<0.05) suggesting critical roles of β2AR in development of cardiac fibrosis caused by βAR stimulation in mice. Conclusions: Both β2 and β3AR are expressed in NRCFs and transduce distinct signaling and β2AR selective stimulation elicit development of cardiac fibrosis via activation of CaMKII signaling. Thus, selective βAR regulation could be potential novel anti-fibrotic therapeutics in HF.


1996 ◽  
Vol 134 (2) ◽  
pp. 529-536 ◽  
Author(s):  
P A Maher

Members of the FGF family of growth factors localize to the nuclei in a variety of different cell types. To determine whether FGF receptors are also present within nuclei and if this localization is regulated by FGFs, nuclei were prepared from quiescent and FGF-2-treated Swiss 3T3 fibroblasts and examined for the presence of FGF receptors by immunoblotting with an antibody produced against the extracellular domain of FGF receptor-1 (FGFR-1). Little or no FGFR-1 is detected in nuclei prepared from quiescent cells. When cells are treated with FGF-2, however, there is a time- and dose-dependent increase in the association of FGFR-1 immunoreactivity with the nucleus. In contrast, treatment with either EGF or 10% serum does not increase the association of FGFR-1 with the nucleus. When cell surface proteins are labeled with biotin, a biotinylated FGFR-1 is detected in the nuclear fraction prepared from FGF-2-treated, but not untreated, cells indicating that the nuclear-associated FGFR-1 immunoreactivity derives from the cell surface. The presence of FGFR-1 in the nuclei of FGF-2-treated cells was confirmed by immunostaining with a panel of different FGFR-1 antibodies, including one directed against the COOH-terminal domain of the protein. Fractionation of nuclei from FGF-2-treated cells indicates that nuclear FGFR-1 is localized to the nuclear matrix, suggesting that the receptor may play a role in regulating gene activity.


1994 ◽  
Vol 269 (30) ◽  
pp. 19626-19632
Author(s):  
W. Schorb ◽  
T.C. Peeler ◽  
N.N. Madigan ◽  
K.M. Conrad ◽  
K.M. Baker

1984 ◽  
Vol 99 (4) ◽  
pp. 1398-1404 ◽  
Author(s):  
C Decker ◽  
R Greggs ◽  
K Duggan ◽  
J Stubbs ◽  
A Horwitz

Neff et al. (1982, J. Cell Biol., 95:654-666) have described a monoclonal antibody, CSAT, directed against a cell surface antigen that participates in the adhesion of skeletal muscle to extracellular matrices. We used the same antibody to compare and parse the determinants of adhesion and morphology on myogenic and fibrogenic cells. We report here that the antigen is present on skeletal and cardiac muscle and on tendon, skeletal, dermal, and cardiac fibroblasts; however, its contribution to their morphology and adhesion is different. The antibody produces large alterations in the morphology and adhesion of skeletal myoblasts and tendon fibroblasts; in contrast, its effects on the cardiac fibroblasts are not readily detected. The effects of CSAT on the other cell types, i.e., dermal and skeletal fibroblasts, cardiac muscle, 5-bromodeoxyuridine-treated skeletal muscle, lie between these extremes. The effects of CSAT on the skeletal myoblasts depends on the calcium concentration in the growth medium and on the culture age. We interpret these differential responses to CSAT as revealing differences in the adhesion of the various cells to extracellular matrices. This interpretation is supported by parallel studies using quantitative assays of cell-matrix adhesion. The likely origin of these adhesive differences is the progressive display of different kinds of adhesion-related molecules and their organizational complexes on increasingly adhesive cells. The antigen to which CSAT is directed is present on all of the above cells and thus appears to be a lowest common denominator of their adhesion to extracellular matrices.


1994 ◽  
Vol 107 (7) ◽  
pp. 1773-1782 ◽  
Author(s):  
U. Gluck ◽  
A. Ben-Ze'ev

alpha-Actinin is an abundant actin crosslinking protein, also localized at adherens type junctions. In adhesion plaques, alpha-actinin can link the actin filaments to integrin via vinculin and talin, or directly by binding to the cytoplasmic domain of beta 1-integrin. The expression of alpha-actinin is rapidly elevated in growth-activated quiescent cells, and is reduced in SV40-transformed 3T3 cells and various differentiating cell types (reviewed by Gluck, U., Kwiatkowski, D. J. and Ben-Ze'ev, A. Proc. Nat. Acad. Sci. USA 90, 383–387, 1993). To study the effect of changes in alpha-actinin levels on cell behavior, alpha-actinin expression was elevated in 3T3 cells by transfection with a full-length human nonmuscle alpha-actinin cDNA. To suppress alpha-actinin levels, 3T3 cells were transfected with an antisense alpha-actinin cDNA construct. Cells overexpressing alpha-actinin by 40–60% displayed a significant reduction in cell motility, as demonstrated by their slower locomotion into an artificial wound, and by forming shorter phagokinetic tracks on colloidal gold-coated substrata. 3T3 cells in which the expression of alpha-actinin was reduced to 25–60% of control levels, after antisense alpha-actinin transfection, had an increased cell motility. Moreover, such alpha-actinin-deficient 3T3 cells formed tumors upon injection into nude mice. The results demonstrate that modulations in alpha-actinin expression can affect, in a major way, the motile and tumorigenic properties of cells, and support the view that decreased alpha-actinin expression could be a common regulatory pathway to malignant transformation of 3T3 cells.


2014 ◽  
Vol 115 (suppl_1) ◽  
Author(s):  
Sara Ranjbarvaziri ◽  
Shah Ali ◽  
Mahmood Talkhabi ◽  
Peng Zhao ◽  
Young-Jae Nam ◽  
...  

Rationale: The traditional definition of “cardiovascular” lineages describes the eponymous cell types - cardiomyoctes, endothelial cells, and smooth muscle cells - that arise from a common mesodermal progenitor cell during heart development. Fibroblasts are an abundant mesenchymal population in the mammalian heart which may have multiple, discrete developmental origins. Mesp1 represents the earliest marker of cardiovascular progenitors, contributing to the majority of cardiac lineages. To date no link between Mesp1 and fibroblast generation has been reported. Objective: We hypothesized progenitor cells expressing Mesp1 can also give rise to cardiac fibroblasts during heart development. Methods and Results: We generated Mesp1cre/+;R26RmTmG reporter mice where Cre-mediated recombination results in GFP activation in all Mesp1 expressing cells and their progeny. To explore their developmental potential, we isolated GFP+ cells from E7.5 Mesp1cre/+;R26RmTmG mouse. In vitro culture and transplantation studies into SCID mouse kidney capsule as wells as chick embryos showed fibroblastic adoption. Results showed that at E9.5 Mesp1+ and Mesp1- progenitors contributed to the proepicardium organ and later at E11.5 they formed epicardium. Analysis of adult hearts demonstrated that the majority of cardiac fibroblasts are derived from Mesp1 expressing cells. Immunohistochemical analysis of heart sections demonstrated expression of fibroblast markers (including DDR2, PDGFRα and Col1) in cells derived from both Mesp1+ and Mesp1- progenitors. Additionally, we investigated whether the two distinct fibroblast populations have different potency towards reprogramming to cardiomyocytes. Results showed no significant difference between Mesp1 and non-Mesp1 isolated fibroblasts to convert to cardiomyocyte fate. Conclusions: Our data demonstrates that cardiovascular progenitors expressing Mesp1 contribute to the proepicardium. These cells, as cardiovascular progenitors, also give rise to the highest portion of cardiac fibroblasts in the mouse heart.


2015 ◽  
Vol 117 (suppl_1) ◽  
Author(s):  
Yi-Li Min ◽  
Svetlana Bezprozvannaya ◽  
Drazen Šošic ◽  
Young-Jae Nam ◽  
Hesham Sadek ◽  
...  

Cardiomyocyte renewal occurs very slowly in adult mammals, and little is known of the genetic basis of cardiac regeneration. Twist is a highly conserved bHLH transcription factor responsible for Drosophila mesoderm formation during embryogenesis. Recent studies have shown that Twist protein is essential for muscle regeneration in adult Drosophila, but the potential role of Twist in the mammalian heart has not been explored. There are two Twist genes in vertebrates, Twist-1 and -2. We show that Twist-1 and -2 are expressed in epicardium and interstitial cells but not in differentiated cardiomyocytes in mice. To understand the potential function of Twist-dependent lineages in the adult heart, we generated inducible Twist2CreERT2; ROSA26-tdTomato reporter mice. By treating these mice with tamoxifen at 8 weeks of age, we observed progressive labeling of various cell types, such as epithelial cells, cardiac fibroblasts, and cardiomyocytes in the heart. We isolated Tomato-positive nonmyocytes from these mice and found that these cells can differentiate into cardiomyocytes and other cell types in vitro. Furthermore, cardiac-specific deletion of both Twist1 and Twist2 resulted in an age-dependent lethal cardiomyopathy. These findings reveal an essential contribution of Twist to long-term maintenance of cardiac function and support the concept of slow, lifelong renewal of cardiomyocytes from a Twist-dependent cell lineage in the adult heart.


Planta Medica ◽  
2017 ◽  
Vol 84 (02) ◽  
pp. 91-99 ◽  
Author(s):  
Yang Xiao ◽  
Wei Chang ◽  
Qing-Qing Wu ◽  
Xiao-Han Jiang ◽  
Ming-Xia Duan ◽  
...  

AbstractFibrosis is a key feature of various cardiovascular diseases and compromises cardiac systolic and diastolic performance. The lack of effective anti-fibrosis drugs is a major contributor to the increasing prevalence of heart failure. The present study was performed to investigate whether the iridoid aucubin alleviates cardiac fibroblast activation and its underlying mechanisms. Neonatal rat cardiac fibroblasts were incubated with aucubin (1, 10, 20, 50 µM) followed by transforming growth factor β1 (TGFβ1, 10 ng/mL) stimulation for 24 h. Fibrosis proliferation was measured by cell counting kit-8 assay. The differentiation of fibroblasts into myofibroblasts was determined by measuring the expression of α-smooth muscle actin. Then, the expressions levels of cardiac fibrosis-related proteins in myofibroblasts were analyzed by western blot and real-time PCR to confirm the anti-fibrosis effect of aucubin. As a result, aucubin suppressed TGFβ1-induced proliferation in fibroblasts and inhibited the TGFβ1-induced activation of fibroblasts to myofibroblasts. In addition, aucubin further attenuated fibrosis-related protein expression in myofibroblasts. Furthermore, this protective effect was related to increased adenosine 5′-monophosphate-activated protein kinase (AMPK) phosphorylation and decreased mammalian target of rapamycin (mTOR) phosphorylation, which was confirmed by an mTOR inhibitor (rapamycin), an AMPK agonist (AICAR) and an AMPKα inhibitor compound C. Collectively, our findings suggest that aucubin protects against TGFβ1-induced fibroblast proliferation, activation and function by regulating the AMPKα/mTOR signal axis.


1990 ◽  
Vol 259 (6) ◽  
pp. L415-L425 ◽  
Author(s):  
P. E. Roberts ◽  
D. M. Phillips ◽  
J. P. Mather

A novel epithelial cell from normal neonatal rat lung has been isolated, established, and maintained for multiple passages in the absence of serum, without undergoing crisis or senescence. By careful manipulation of the nutrition/hormonal microenvironment, we have been able to select, from a heterogeneous population, a single epithelial cell type that can maintain highly differentiated features in vitro. This cell type has characteristics of bronchiolar epithelial cells. A clonal line, RL-65, has been selected and observed for greater than 2 yr in continuous culture. It has been characterized by ultrastructural, morphological, and biochemical criteria. The basal medium for this cell line is Ham's F12/Dulbecco's modified Eagle's (DME) medium plus insulin (1 micrograms/ml), human transferrin (10 micrograms/ml), ethanolamine (10(-4) M), phosphoethanolamine (10(-4) M), selenium (2.5 x 10(-8) M), hydrocortisone (2.5 x 10(-7) M), and forskolin (5 microM). The addition of 150 micrograms/ml of bovine pituitary extract to the defined basal medium stimulates a greater than 10-fold increase in cell number and a 50- to 100-fold increase in thymidine incorporation. The addition of retinoic acid results in further enhancement of cell growth and complete inhibition of keratinization. We have demonstrated a strategy that may be applicable to isolating other cell types from the lung and maintaining their differentiated characteristics for long-term culture in vitro. Such a culture system promises to be a useful model in which to study cellular events associated with differentiation and proliferation in the lung and to better understand the molecular mechanisms involved in these events.


1994 ◽  
Vol 267 (2) ◽  
pp. C349-C356 ◽  
Author(s):  
S. C. Lee ◽  
J. S. Hamilton ◽  
T. Trammell ◽  
B. A. Horwitz ◽  
P. A. Pappone

The activity of the uncoupling protein in brown fat mitochondria is enhanced at alkaline pH, leading to the hypothesis that changes in intracellular pH (pHi) may modulate the thermogenic response to sympathetic stimulation. We employed ratio imaging of the fluorescent dye 2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein to measure pHi in acutely isolated single brown fat cells from hamster and neonatal rat and in cultured rat cells. Basal pHi averaged approximately 7.2 in HCO3- media and 0.1-0.15 pH units lower in nominally HCO3(-)-free media in all cell types. In both HCO3- and HCO3(-)-free media, stimulation with norepinephrine (NE) typically caused an alkalinization of approximately 0.05-0.1 pH units, which was followed by a smaller net acidification occurring primarily after NE was removed. Alkalinization seemed to be mediated predominantly by alpha-adrenergic stimulation, while acidification most often followed beta-adrenergic activation. Similar pHi changes were elicited by NE in rat and hamster cells, but responses were more frequent in hamster cells. Assays of recovery from ammonium prepulse-induced acid loads indicated that rat and hamster cells have both Na(+)-H+ and Na(+)- and HCO3(-)-dependent regulatory systems, while hamster cells have, in addition, a Na(+)-independent recovery mechanism activated at acid pHi. We conclude that alpha-adrenergic alkalinization of brown fat may contribute to the control of thermogenesis.


Sign in / Sign up

Export Citation Format

Share Document