Simplex Optimized J-Acid Method for the Determination of Formaldehyde

1973 ◽  
Vol 56 (6) ◽  
pp. 1489-1495
Author(s):  
Fred P Czech

Abstract This paper is the first in a number of didactic reports on the application of simplex optimization to analytical methods and instruments. The use of simplex optimization allows rapid determination of the best conditions for analytical purposes. Some basic concepts used in simplex optimization operations are introduced, described, and exemplified. A rapid and highly sensitive method for the colorimetric analysis of formaldehyde via J-acid is derived by means of simplex optimization. The method is over 5 times as sensitive as the original J-acid procedure and almost 10% more sensitive than the simplex optimized chromotropic acid procedure. The average relative standard deviation is about ±1.6%. The limit of detectability is estimated to be 70 ppb.

2011 ◽  
Vol 8 (4) ◽  
pp. 1528-1535 ◽  
Author(s):  
F. Nekouei ◽  
Sh. Nekouei

A simple, fast, reproducible and sensitive method for the flotation- spectrophotometric determination of Al3+is reported. The apparent molar absorptivity (ε) of the ion associate was determined to be 8.35×104L mol-1cm-1. The calibration curve was linear in the concentration range of 1.0-50 ng mL-1of Al3+with a correlation coefficient of 0.9997. The limit of detection (LOD) was 0.621 ng mL. The relative standard deviation (RSD) at 10 and 30 ng mL-1of aluminium were 1.580 and 2.410% (n=7) respectively. The method was applied for measuring the amount of aluminium in water samples.


1984 ◽  
Vol 67 (1) ◽  
pp. 52-54 ◽  
Author(s):  
Henry L Chang ◽  
Jonathan W Devries ◽  
Paul A Larson ◽  
Hasmukh H Patel

Abstract A modification of the Romer method for determining deoxynivalenol (DON) provides rapid sample cleanup and includes liquid chromatographic (LC) quantitation. The method was evaluated using wheat, wheat flour, and other wheat products. The sample is extracted with acetonitrile–water (84 + 16), and an aliquot of the extract is subjected to activated charcoal–alumina column chromatography. The extract is then evaporated and diluted to volume with mobile phase, and DON is quantitated using liquid chromatography. The relative standard deviation based on duplicate samples is 6.07%. The detection limit is 30 ppb based on 2 x signal/noise ratio. Results by this method compared with the results obtained by the Scott GC method showed a correlation coefficient of 0.992 with a mean vomitoxin content of 779 ppb by this method and 716 ppb by the Scott method for 14 samples.


2014 ◽  
Vol 68 (6) ◽  
Author(s):  
Helen Karasali ◽  
Konstantinos Kasiotis ◽  
Kyriaki Machera

AbstractAn isocratic reversed-phase high-performance liquid chromatographic (RP-HPLC) method with diode array detection (DAD) was developed for the determination of aluminium tris(ethyl phosphonate) (fosetyl-aluminium, fosetyl-Al) in plant-protection products. The method involves extraction of the active ingredient by sonication of the sample with water and direct measurement by RPHPLC. The isocratic RP-HPLC method for the analysis of fosetyl-Al thus developed was then validated for specificity, linearity, precision, and accuracy. The chromatographic peak confirmation was performed by LC-MS using electron spray ionisation in the negative-ion mode. The repeatability of the method, expressed as relative standard deviation (RSD, %), was found to be 0.5 % and the limit of detection was 0.035 mg mL−1. The average recoveries of the three fortification levels varied from 96.7 % to 100.6 % and the RSDs ranged between 2.6 % and 6.3 %. The precision of the method was also considered to be acceptable as the experimental repeatability relative standard deviation (RSDr) was lower than the RSDr, calculated using the Horwitz equation. The method is rapid, simple, accurate, cost-effective, and provides a new and reliable means for the analysis of fosetyl-Al in formulated products.


1996 ◽  
Vol 79 (2) ◽  
pp. 567-570 ◽  
Author(s):  
José Luis Vilchez ◽  
Diego Torres-Bustos ◽  
Rosario Blanc ◽  
Alberto Navalón

Abstract A sensitive method for determining trace amounts of bentazone was developed. The method is based on solid-phase spectrofluorimetry. Bentazone was fixed on a dextran-type anion-exchange gel, and the fluorescence of the gel, packed in a 1 mm thick quartz cell, was measured directly at an excitation wavelength of 338 nm and an emission wavelength of 436 nm by using a solid-phase attachment. The applicable concentration range was 2.0–120.0 μg/L, with a detection limit of 0.4 μg/L. The relative standard deviation at the 30.0 μg/L level was 1.2%. The method was used to determine bentazone in natural water samples. Recoveries were 96.0–102.5%.


Author(s):  
P.F. Collins ◽  
W.W. Lawrence ◽  
J.F. Williams

AbstractA procedure for the automated determination of ammonia in tobacco has been developed. Ammonia is extracted from the ground tobacco sample with water and is determined with a Technicon Auto Analyser system which employs separation of the ammonia through volatilization followed by colourimetry using the phenate-hypochlorite reaction. The procedure has been applied to a variety of tobaccos containing from 0.02 to 0.5 % ammonia with an overall relative standard deviation of 2 %. The accuracy of the procedure as judged by recovery tests and by comparison to a manual distillation method is considered adequate


Separations ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 35
Author(s):  
Jason Hoisington ◽  
Jason S. Herrington

A canister-based sampling method along with preconcentrator-Gas chromatography-Mass Spectrometry (GC-MS) analysis was applied to ethylene oxide (EtO or EO) and 75 other volatile organic compounds (VOCs) in ambient air. Ambient air can contain a large variety of VOCs, and thorough analysis requires non-discriminatory sampling and a chromatographic method capable of resolving a complex mixture. Canister collection of whole air samples allows for the collection of a wide range of volatile compounds, while the simultaneous analysis of ethylene oxide and other VOCs allows for faster throughput than separate methods. The method presented is based on US EPA Method TO-15A and allows for the detection of EtO from 18 to 2500 pptv. The method has an average accuracy of 104% and precision of 13% relative standard deviation (RSD), with an instrument run time of 32 min. In addition, a link between canister cleanliness and ethylene oxide growth is observed, and potential mechanisms and cleaning strategies are addressed.


1998 ◽  
Vol 81 (4) ◽  
pp. 763-774 ◽  
Author(s):  
Joanna M Lynch ◽  
David M Barbano ◽  
J Richard Fleming

Abstract The classic method for determination of milk casein is based on precipitation of casein at pH 4.6. Precipitated milk casein is removed by filtration and the nitrogen content of either the precipitate (direct casein method) or filtrate (noncasein nitrogen; NCN) is determined by Kjeldahl analysis. For the indirect casein method, milk total nitrogen (TN; Method 991.20) is also determined and casein is calculated as TN minus NCN. Ten laboratories tested 9 pairs of blind duplicate raw milk materials with a casein range of 2.42- 3.05℅ by both the direct and indirect casein methods. Statistical performance expressed in protein equivalents (nitrogen ⨯ 6.38) with invalid and outlier data removed was as follows: NCN method (wt%), mean = 0.762, sr = 0.010, SR = 0.016, repeatability relative standard deviation (RSDr) = 1.287℅, reproducibility relative standard deviation (RSDR) = 2.146%; indirect casein method (wt℅), mean = 2.585, repeatability = 0.015, reproducibility = 0.022, RSDr = 0.560℅, RSDR = 0.841; direct casein method (wt℅), mean = 2.575, sr = 0.015, sR = 0.025, RSDr = 0.597℅, RSDR = 0.988℅. Method performance was acceptable and comparable to similar Kjeldahl methods for determining nitrogen content of milk (Methods 991.20, 991.21,991.22, 991.23). The direct casein, indirect casein, and noncasein nitrogen methods have been adopted by AOAC INTERNATIONAL.


2018 ◽  
Vol 71 (12) ◽  
pp. 945
Author(s):  
Xin Fu ◽  
He Zhang ◽  
Jie Zhang ◽  
Shi-Tong Wen ◽  
Xing-Cheng Deng

A highly sensitive and label-free microbead-based ‘turn-on’ assay was developed for the detection of Hg2+ in urine based on the Hg2+-mediated formation of intermolecular split G-quadruplex–hemin DNAzymes. In the presence of Hg2+, T–T mismatches between the two partial cDNA strands were stabilized by a T–Hg2+–T base pair, and can cause the G-rich sequences of the two oligonucleotides to associate to form a split G-quadruplex which is able to bind hemin to form the catalytically active G-quadruplex–hemin DNAzyme. This microbead-based ‘turn-on’ process allows the detection of Hg2+ in urine samples at concentrations as low as 0.5 pM. The relative standard deviation and recovery are 1.2–3.9 and 98.7–103.2%, respectively. The remarkable sensitivity for Hg2+ is mainly attributed to the enhanced mass transport ability that is inherent in homogeneous microbead-based assays. Compared with previous developments of intermolecular split G-quardruplex–hemin DNAzymes for the homogeneous detection of Hg2+ (the limit of detection was 19nM), a signal enhancement of ~1000 times is obtained when such an assay is performed on the surface of microbeads.


2013 ◽  
Vol 448-453 ◽  
pp. 406-408
Author(s):  
Jing Liu ◽  
Xiao Na Ji ◽  
Qing Kai Ren ◽  
Sheng Shu Ai ◽  
Li Jun Wan ◽  
...  

We established a method fordetermination of nitrate in water by High Performance Liquid Chromatography(HPLC). The sample was analysed by HPLC-ADA and was quantitated by externalstandard method after being simply processed. This methd has the advantages ofhigh separation efficiency and fast analysis. The experiment result showed thatthe linearly dependent coefficient was0.994, the recovery rate was between 98.7%~105.7%,the relative standard deviation(RSD)wasless than 2.1 %, and the lowest detectable limit is 0.01ng (S/N=1.6).


Sign in / Sign up

Export Citation Format

Share Document