scholarly journals Effect of calfhood nutrition on metabolic hormones, gonadotropins, and estradiol concentrations and on reproductive organ development in beef heifer calves

2020 ◽  
Vol 98 (10) ◽  
Author(s):  
Alan K Kelly ◽  
Colin Byrne ◽  
Mark McGee ◽  
George A Perry ◽  
Mark A Crowe ◽  
...  

Abstract This study examined the effect of plane of nutrition on the endocrinological regulation of the hypothalamic–pituitary–ovarian (HPO) axis in beef heifer calves during a critical sexual developmental window early in calf hood. Forty Holstein-Friesian × Angus heifers (mean age 19 d, SEM = 0.63) were assigned to a high (HI; ADG 1.2 kg) or moderate (MOD; ADG 0.50 kg) nutritional level from 3 to 21 wk of life. Intake was recorded using an electronic calf feeding system, BW was recorded weekly, and blood samples were collected on the week of age 5, 10, 15, and 20 for metabolite, reproductive, and metabolic hormone determination. At 19 wk of age, on sequential days, an 8-h window bleed was carried out for luteinizing hormone (LH), follicle-stimulating hormone (FSH), and estradiol analysis. To characterize anterior pituitary gland function, an intravenous GnRH challenge was conducted (19 wk of age). Blood was collected via a jugular catheter every 15 min for 135 min for the analysis of LH, FSH, and estradiol. Calves were subsequently euthanized at 21 wk of age; the anterior pituitary, metabolic organs, and reproductive tract were weighed, and ovarian surface follicular numbers and oocytes recovered were recorded. Mean ADG was 1.18 and 0.50 kg for HI and MOD, respectively, resulting in a 76.6-kg difference in BW (P < 0.001). Blood insulin, glucose, and IGF-1 concentrations were greater (P < 0.001) for HI compared with MOD. There was a diet × time interaction for leptin (P < 0.01); concentrations were greater in HI compared with MOD at 20 wk of age with no difference between treatments before this. Dietary treatment did not alter the concentrations of adiponectin or anti-mullerian hormone. There was a diet × time interaction for FSH, whereby MOD had greater concentrations than HI at 10, 15, and 20, but not at 5 wk of age. Over the duration of an 8-h window bleed (19 wk of age), serum concentrations of LH, LH pulse frequency, and LH pulse amplitude were unaffected by treatment, whereas FSH (0.23 vs. 0.43 ng/mL) and estradiol (0.53 vs. 0.38 ng/mL) concentrations were less than and greater, respectively, for HI than MOD (P < 0.05). Likewise, following a GnRH challenge, the area under the curve analysis revealed greater (P < 0.01) estradiol and lesser (P < 0.01) FSH concentrations in calves on the HI relative to MOD diet, whereas concentrations of LH were unaffected (P = 0.26) between treatments. Ovarian surface follicle numbers were greater (P < 0.05) in HI compared with MOD. Total reproductive tract, uterus, and ovarian tissue expressed relative to BW were greater (P < 0.05) for HI compared with MOD. In conclusion, enhanced nutrition in early calfhood advances the ontogeny development of the HPO axis.

Reproduction ◽  
2008 ◽  
Vol 136 (6) ◽  
pp. 787-797 ◽  
Author(s):  
Ken-Go Hayashi ◽  
Motozumi Matsui ◽  
Takashi Shimizu ◽  
Natsuko Sudo ◽  
Ayako Sato ◽  
...  

We previously established a bovine experimental model showing that the corpus luteum (CL) does not appear following aspiration of the preovulatory follicle before the onset of LH surge. Using this model, the present study aimed to determine the profile of follicular development and the endocrinological environment in the absence of CL with variable nadir circulating progesterone (P4) concentrations during the oestrous cycle in cattle. Luteolysis was induced in heifers and cows and they were assigned either to have the dominant follicle aspirated (CL-absent) or ovulation induced (CL-present). Ultrasound scanning to observe the diameter of each follicle and blood collection was performed from the day of follicular aspiration or ovulation and continued for 6 days. The CL-absent cattle maintained nadir circulating P4throughout the experimental period and showed a similar diameter between the largest and second largest follicle, resulting in co-dominant follicles. Oestradiol (E2) concentrations were greater in the CL-absent cows than in the CL-present cows at day −1, day 1 and day 2 from follicular deviation. The CL-absent cows had a higher basal concentration, area under the curve (AUC), pulse amplitude and pulse frequency of LH than the CL-present cows. After follicular deviation, the CL-absent cows showed a greater basal concentration, AUC and pulse amplitude of growth hormone (GH) than the CL-present cows. These results suggest that the absence of CL accompanying nadir circulating P4induces an enhancement of LH pulses, which involves the growth of the co-dominant follicles. Our results also suggest that circulating levels of P4and E2affect pulsatile GH secretion in cattle.


2006 ◽  
Vol 91 (4) ◽  
pp. 1309-1316 ◽  
Author(s):  
Yanira L. Pagán ◽  
Serene S. Srouji ◽  
Yarisie Jimenez ◽  
Anne Emerson ◽  
Sabrina Gill ◽  
...  

Context: Patients with polycystic ovarian syndrome (PCOS) have increased LH relative to FSH, but LH is modified by body mass index (BMI). Objective: The objective of the study was to determine whether the impact of BMI on neuroendocrine dysregulation in PCOS is mediated at the hypothalamic or pituitary level. Participants/Interventions/Setting: Twenty-four women with PCOS across a spectrum of BMIs underwent frequent blood sampling, iv administration of GnRH (75 ng/kg), and sc administration of the NAL-GLU GnRH antagonist (5 μg/kg) in the General Clinical Research Center at an academic hospital. Main Outcome Measures: LH pulse frequency and LH response to submaximal GnRH receptor blockade were used as measures of hypothalamic function; LH response to GnRH was used as a measure of pituitary responsiveness. Results: BMI was negatively correlated with mean LH, LH/FSH, and LH pulse amplitude. There was no effect of BMI on LH pulse frequency. Percent inhibition of LH was decreased in PCOS, compared with normal women (53.9 ± 1.5 vs. 63.1 ± 4.1, respectively; P < 0.01), suggesting an increase in the amount of endogenous GnRH, but was not influenced by BMI. Pituitary responsiveness to GnRH was inversely correlated with BMI (peak LH, R = −0.475, P < 0.02; and LH area under the curve R = −0.412, P < 0.02). Conclusions: LH pulse frequency and quantity of GnRH are increased in PCOS, but there is no influence of BMI on either marker of hypothalamic function. The pituitary response to a weight-based dose of GnRH is inversely related to BMI in PCOS. These studies suggest that the effect of BMI on LH is mediated at a pituitary and not a hypothalamic level in PCOS.


Reproduction ◽  
2000 ◽  
pp. 159-167 ◽  
Author(s):  
JP Aravindakshan ◽  
A Honaramooz ◽  
PM Bartlewski ◽  
AP Beard ◽  
RR Pierson ◽  
...  

The reproductive development of bull calves born in spring and autumn was compared. Mean serum LH concentrations in calves born in spring increased from week 4 to week 18 after birth and decreased by week 24. In bull calves born in autumn, mean LH concentrations increased from week 4 to week 8 after birth and remained steady until week 44. LH pulse amplitude was lower in bull calves born in autumn than in calves born in spring until week 24 of age (P < 0.05). There was a negative correlation between LH pulse frequency at week 12 after birth and age at puberty in bull calves, irrespective of season of birth, and LH pulse frequency at week 18 also tended to correlate negatively with age at puberty. Mean serum FSH concentrations, age at puberty, bodyweight, scrotal circumference, testes, prostate and vesicular gland dimensions, and ultrasonographic grey scale (pixel units) were not significantly different between bull calves born in autumn and spring. However, age and body-weight at puberty were more variable for bull calves born in autumn (P < 0.05). In a second study, bull calves born in spring received either a melatonin or sham implant immediately after birth and at weeks 6 and 11 after birth. Implants were removed at week 20. Mean LH concentrations, LH pulse frequency and amplitude, mean FSH concentrations and age at puberty did not differ between the two groups. No significant differences between groups in the growth and pixel units of the reproductive tract were observed by ultrasonography. In conclusion, although there were differences in the pattern of LH secretion in the prepubertal period between bull calves born in autumn and spring, the postnatal changes in gonadotrophin secretion were not disrupted by melatonin treatment in bull calves born in spring. Reproductive tract development did not differ between calves born in spring and autumn but age at puberty was more variable in bull calves born in autumn. LH pulse frequency during the early prepubertal period may be a vital factor in determining the age of bull calves at puberty.


1982 ◽  
Vol 94 (2) ◽  
pp. 177-182 ◽  
Author(s):  
Takashi Higuchi ◽  
Masazumi Kawakami

Changes in the characteristics of LH secretory pulses in female rats were determined in different hormonal conditions; during the oestrous cycle and after ovariectomy and oestrogen treatment. The frequency and amplitude of the LH pulses were stable during the oestrous cycle except at oestrus when a pattern could not be discerned because of low LH concentrations. These were significantly lower than those measured during other stages of the cycle. Mean LH concentrations and LH pulse amplitudes increased with time up to 30 days after ovariectomy. The frequency of the LH pulse was unchanged 4 days after ovariectomy when mean LH levels had already increased. The frequency increased 10 days after ovariectomy and then remained stable in spite of a further increase in mean serum LH concentrations. Oestradiol-17β injected into ovariectomized rats caused a decrease in LH pulse amplitude but no change in pulse frequency. One day after treatment with oestradiol benzoate no LH pulse was detectable, probably because the amplitude was too small. A generator of pulsatile LH release is postulated and an oestrogen effect on its function is discussed.


1986 ◽  
Vol 111 (4) ◽  
pp. 553-557 ◽  
Author(s):  
Inese Z. Beitins ◽  
Maria L. Dufau

Abstract. Having previously established that biologically active luteinizing hormone (LH) is secreted in episodic pulsations that vary in relation to the menstrual cycle, we investigated the possibility that a temporal relationship could exist between the bioactive LH pulses and progesterone secretion from the late corpus luteum. In 4 young women blood was withdrawn every 15 min for 8 h. Serum progesterone concentrations fluctuated at a mean frequency of 0.9 h with a wide range of amplitudes (13.8 to 1.7 ng/ml). Serum bioactive LH pulse frequency in contrast was 0.25 pulses/h in all subjects. The pulse amplitude was 18.2 to 12.4 mIU/ml (2nd IRP-hMG). These data reveal that within the 8 h-period studied, progesterone secretory pulses occurred four times more frequently as those for bioactive LH. Therefore it is unlikely that a temporal relationship exists between individual bioactive LH and pulses of progesterone secreted by the late corpus luteum.


Endocrinology ◽  
2003 ◽  
Vol 144 (1) ◽  
pp. 163-171 ◽  
Author(s):  
Glenn C. Harris ◽  
Jon E. Levine

Abstract A microdialysis technique was used in male rats to directly assess the postulate that pubertal maturation is associated with accelerated GnRH pulsatility. Juvenile male rats, postnatal d 43 or 45 (n = 4) were stereotaxically fitted with guide cannulas directed toward the lateral median eminence, and repeated microdialysis experiments were conducted over 4–6 d. In each session, samples were collected continuously over 12 h (0900–2100 h) at 5-min intervals Results from individual peripubertal animals were pooled into two time bins for postnatal d 45–47 and 48–50, respectively, and GnRH characteristics were compared between the two epochs. The GnRH pulse frequency and mean GnRH concentration were significantly elevated at 48–50 d compared with 45–47 d. The GnRH pulsatility characteristics for 45–47 d vs. 48–50 d were as follows: pulse frequency, 0.74 ± 0.16 vs. 1.79 ± 0.19 pulses/h (P &lt; 0.05); pulse amplitude, 254.1 ± 22.3 vs. 347.2 ± 15.8 Δpg/ml (difference in value from trough to peak); and mean release, 0.55 ± 0.03 vs. 2.04 ± 0.04 pg/5 min (P &lt; 0.05). An additional two rats were dialyzed only once on postnatal d 50 to assess the effects of repeated sampling; the GnRH pulse characteristics in these animals were similar to those in rats sampled for a third or fourth time on postnatal d 48–50. To further assess the possible effects of repeated sampling on GnRH release profiles, a group of adult male rats (postnatal d 95–105; n = 3) was also dialyzed on four consecutive days. In these rats no significant alteration in GnRH pulse generator activity was observed over the four sessions. Moreover, the increase in GnRH pulse frequency observed in the peripubertal rats was found to be sustained in adult animals. To better understand the temporal relationship of GnRH pulse generator activity to reproductive maturation, groups of male rats were killed from postnatal d 45–56 along with an adult group at 95–105 d (n = 5/group) and examined for physiological signs of reproductive development. Gradual increases in serum levels of LH and testosterone and decreases in FSH and inhibin B were seen from postnatal d 45–56 to adulthood. Mature spermatozoa were found in the vas deferens by postnatal d 53. Our results demonstrate that in the late juvenile stage of male rat development, GnRH pulse generator activity is gradually accelerated over the course of consecutive days. This acceleration occurs over a period during which serum LH and testosterone are rising to adult levels, and it precedes the presence of mature spermatozoa in the vas deferens by 3 d. Our observations provide direct support for the hypothesis that an acceleration of GnRH pulsatility is the critical neural stimulus for the initiation of pubertal maturation in males. The peripheral and central cues that prompt the pubertal activation of the GnRH pulse generator remain to be characterized.


1991 ◽  
Vol 131 (1) ◽  
pp. 49-55 ◽  
Author(s):  
Q. Dong ◽  
R. M. Lazarus ◽  
L. S. Wong ◽  
M. Vellios ◽  
D. J. Handelsman

ABSTRACT This study aimed to determine the effect of streptozotocin (STZ)-induced diabetes on pulsatile LH secretion in the mature male rat. LH pulse frequency was reduced by 56% and pulse amplitude by 54%, with a consequential decrease of 72% in mean LH levels 8 days after i.v. administration of STZ (55 mg/kg) to castrated Wistar rats compared with castrated non-diabetic controls. Twice daily insulin treatment completely reversed all parameters of pulsatile LH secretion to control values. Food-restricted non-diabetic controls, studied to distinguish the metabolic effect of diabetes from that of concurrent weight loss, demonstrated a 34% reduction in LH pulse frequency but no significant changes in LH pulse amplitude or mean LH levels compared with non-diabetic controls given free access to food. To distinguish whether the decreased LH pulse amplitude in diabetes was due to a reduction in either the quantity of hypothalamic gonadotrophin-releasing hormone (GnRH) released per secretory episode or to decreased pituitary responsiveness to GnRH, the responsiveness of the pituitary to exogenous GnRH (1–1000 ng/kg body weight) was tested in diabetic rats after castration, using a full Latin square experimental design. The net LH response (total area under response curve over 40 min following GnRH) was decreased by 33% (P=0·001) in diabetic compared with control rats. The decreased LH pulse frequency in STZ-induced diabetes therefore suggests that the metabolic effect of diabetes is to decelerate directly the firing rate of the hypothalamic GnRH pulse generator independent of testicular feed-back. These effects were fully reversed by insulin treatment and were only partly due to the associated weight loss. The impaired pituitary responsiveness to GnRH is at least partly involved in the reduction of LH pulse amplitude. Journal of Endocrinology (1991) 131, 49–55


2009 ◽  
Vol 1239 ◽  
Author(s):  
Cho-Hui Lim ◽  
Kiersten R Schierbeek ◽  
Michael E Mullins

AbstractPLLA microparticles were successfully fabricated via pulsed-DC electrospray. In this study, we investigated the effect of the pulsed voltage characteristics (e.g. pulse frequency, pulse amplitude and pulse width) on the particle’s size. We found that pulse frequency, pulse amplitude, pulse width, and the combinations of these factors had a statistically significant effect on the particle’s size. The process conditions to obtain smaller particles with uniform shape and size are a low pulse frequency, high pulse amplitude, and long pulse width (or a high duty cycle).


1997 ◽  
Vol 152 (2) ◽  
pp. 329-337 ◽  
Author(s):  
C L Adam ◽  
P A Findlay ◽  
C E Kyle ◽  
P Young ◽  
J G Mercer

Abstract Castrate male sheep (wethers, average liveweight 38 ± 0·6 kg) were given one of the following diets for 10 weeks followed by euthanasia (n=8/group): high-energy high-protein providing 1·5 times the energy required to maintain liveweight (maintenance) (group 1·5M), low-energy low-protein at 0·5 maintenance (0·5M), or low-energy high-protein at 0·5 maintenance (0·5M+P). 1·5M wethers gained 22% liveweight whereas 0·5M and 0·5M+P wethers lost 18 and 13% liveweight respectively. Relative to the 1·5M group, the 0·5M and 0·5M+P groups had similar plasma concentrations of glucose and cortisol throughout, but elevated non-esterified fatty acids (P<0·001) and reduced IGF-I and insulin (P<0·05, 0·01 or 0·001) from 1 week onwards. Each week blood samples were taken every 12 min for 4 h and plasma assayed for LH. Mean concentration over 4 h, LH pulse frequency and LH pulse amplitude showed no progressive change in 1·5M sheep. However, in both 0·5M and 0·5M+P groups mean LH increased (P<0·001 and P<0·01 respectively), pulse frequency decreased (P<0·01 and P<0·01) and pulse amplitude increased (P<0·001 and P<0·01) over the 10-week period. Anterior pituitary LH content was greater in 0·5M (P<0·01) and 0·5M+P (P<0·05) than in 1·5M sheep. Coronal sections (20 μm) of hypothalamic brain tissue were subjected to in situ hybridisation to determine gene expression for neuropeptide Y (NPY). NPY mRNA was concentrated in the arcuate nucleus and median eminence, with total amounts greater in both 0·5M (310%, P<0·001) and 0·5M+P (333%, P<0·01) groups than in 1·5M sheep (100%). These data reveal that chronic low dietary energy intake by long-term castrates, with high or low protein intake, reduces LH pulse frequency but increases the circulating levels of LH by virtue of an increase in pulse amplitude, and concomitantly increases hypothalamic NPY gene expression. Journal of Endocrinology (1997) 152, 329–337


1990 ◽  
Vol 70 (1) ◽  
pp. 121-128 ◽  
Author(s):  
V. L. TRUDEAU ◽  
L. M. SANFORD

Seasonal variations in LH, FSH, and testosterone secretion were investigated for adult Landrace boars housed in different social environments for 1 yr. Socially nonrestricted boars (n = 4) were penned adjacent to ovariectomized gilts that were hormonally brought into estrus every 2 wk, while socially restricted boars (n = 4) were kept in pens with solid walls. Mean hormone concentrations were determined from the assay of single AM and PM blood samples collected from the jugular vein by venipuncture once a month. In November, February, May and August, blood samples were collected serially over 12 h from jugular catheters for assessment of pulsatile LH and testosterone secretion, and the LH response to a GnRH injection (1 μg kg−1 body weight). Mean LH and testosterone concentrations were relatively high in all boars during the late summer and fall, and often were greater for the socially nonrestricted versus the restricted boars (group × month), P < 0.05) in the winter (December and January). Mean FSH concentration also varied with month (P < 0.05). Pulse analysis indicated that higher mean testosterone concentrations in November and August were the result of increases (month, P < 0.05) in testosterone-pulse frequency and basal concentration. Maximal mean LH concentration in August was associated with maximal (month, P < 0.05) LH-pulse amplitude and basal concentration. The amplitude of the LH peak following GnRH injection increased (P < 0.05) between November and May, and remained high in August. Key words: Gonadotropins, testosterone, blood, season, social environment, boar


Sign in / Sign up

Export Citation Format

Share Document