scholarly journals Pubertal Acceleration of Pulsatile Gonadotropin-Releasing Hormone Release in Male Rats as Revealed by Microdialysis

Endocrinology ◽  
2003 ◽  
Vol 144 (1) ◽  
pp. 163-171 ◽  
Author(s):  
Glenn C. Harris ◽  
Jon E. Levine

Abstract A microdialysis technique was used in male rats to directly assess the postulate that pubertal maturation is associated with accelerated GnRH pulsatility. Juvenile male rats, postnatal d 43 or 45 (n = 4) were stereotaxically fitted with guide cannulas directed toward the lateral median eminence, and repeated microdialysis experiments were conducted over 4–6 d. In each session, samples were collected continuously over 12 h (0900–2100 h) at 5-min intervals Results from individual peripubertal animals were pooled into two time bins for postnatal d 45–47 and 48–50, respectively, and GnRH characteristics were compared between the two epochs. The GnRH pulse frequency and mean GnRH concentration were significantly elevated at 48–50 d compared with 45–47 d. The GnRH pulsatility characteristics for 45–47 d vs. 48–50 d were as follows: pulse frequency, 0.74 ± 0.16 vs. 1.79 ± 0.19 pulses/h (P < 0.05); pulse amplitude, 254.1 ± 22.3 vs. 347.2 ± 15.8 Δpg/ml (difference in value from trough to peak); and mean release, 0.55 ± 0.03 vs. 2.04 ± 0.04 pg/5 min (P < 0.05). An additional two rats were dialyzed only once on postnatal d 50 to assess the effects of repeated sampling; the GnRH pulse characteristics in these animals were similar to those in rats sampled for a third or fourth time on postnatal d 48–50. To further assess the possible effects of repeated sampling on GnRH release profiles, a group of adult male rats (postnatal d 95–105; n = 3) was also dialyzed on four consecutive days. In these rats no significant alteration in GnRH pulse generator activity was observed over the four sessions. Moreover, the increase in GnRH pulse frequency observed in the peripubertal rats was found to be sustained in adult animals. To better understand the temporal relationship of GnRH pulse generator activity to reproductive maturation, groups of male rats were killed from postnatal d 45–56 along with an adult group at 95–105 d (n = 5/group) and examined for physiological signs of reproductive development. Gradual increases in serum levels of LH and testosterone and decreases in FSH and inhibin B were seen from postnatal d 45–56 to adulthood. Mature spermatozoa were found in the vas deferens by postnatal d 53. Our results demonstrate that in the late juvenile stage of male rat development, GnRH pulse generator activity is gradually accelerated over the course of consecutive days. This acceleration occurs over a period during which serum LH and testosterone are rising to adult levels, and it precedes the presence of mature spermatozoa in the vas deferens by 3 d. Our observations provide direct support for the hypothesis that an acceleration of GnRH pulsatility is the critical neural stimulus for the initiation of pubertal maturation in males. The peripheral and central cues that prompt the pubertal activation of the GnRH pulse generator remain to be characterized.

1991 ◽  
Vol 131 (1) ◽  
pp. 49-55 ◽  
Author(s):  
Q. Dong ◽  
R. M. Lazarus ◽  
L. S. Wong ◽  
M. Vellios ◽  
D. J. Handelsman

ABSTRACT This study aimed to determine the effect of streptozotocin (STZ)-induced diabetes on pulsatile LH secretion in the mature male rat. LH pulse frequency was reduced by 56% and pulse amplitude by 54%, with a consequential decrease of 72% in mean LH levels 8 days after i.v. administration of STZ (55 mg/kg) to castrated Wistar rats compared with castrated non-diabetic controls. Twice daily insulin treatment completely reversed all parameters of pulsatile LH secretion to control values. Food-restricted non-diabetic controls, studied to distinguish the metabolic effect of diabetes from that of concurrent weight loss, demonstrated a 34% reduction in LH pulse frequency but no significant changes in LH pulse amplitude or mean LH levels compared with non-diabetic controls given free access to food. To distinguish whether the decreased LH pulse amplitude in diabetes was due to a reduction in either the quantity of hypothalamic gonadotrophin-releasing hormone (GnRH) released per secretory episode or to decreased pituitary responsiveness to GnRH, the responsiveness of the pituitary to exogenous GnRH (1–1000 ng/kg body weight) was tested in diabetic rats after castration, using a full Latin square experimental design. The net LH response (total area under response curve over 40 min following GnRH) was decreased by 33% (P=0·001) in diabetic compared with control rats. The decreased LH pulse frequency in STZ-induced diabetes therefore suggests that the metabolic effect of diabetes is to decelerate directly the firing rate of the hypothalamic GnRH pulse generator independent of testicular feed-back. These effects were fully reversed by insulin treatment and were only partly due to the associated weight loss. The impaired pituitary responsiveness to GnRH is at least partly involved in the reduction of LH pulse amplitude. Journal of Endocrinology (1991) 131, 49–55


Endocrinology ◽  
2009 ◽  
Vol 150 (7) ◽  
pp. 3221-3227 ◽  
Author(s):  
Stephanie Constantin ◽  
Alain Caraty ◽  
Susan Wray ◽  
Anne H. Duittoz

Pulsatile release of GnRH-1 is critical to stimulate gonadotropes of the anterior pituitary. This secretory pattern seems to be inherent to GnRH-1 neurons, however, the mechanisms underlying such episodical release remain unknown. In monkey nasal explants, the GnRH-1 population exhibits synchronized calcium events with the same periodicity as GnRH-1 release, suggesting a link, though the sequence of events was unclear. GnRH-1 neurons in mouse nasal explants also exhibit synchronized calcium events. In the present work, GnRH-1 release was assayed in mouse nasal explants using radioimmunology and its relationship with calcium signaling analyzed. GnRH-1 neurons generated episodical release as early as 3 d in vitro (div) and maintained such release throughout the period studied (3–21 div). The pulse frequency remained constant, suggesting that the pulse generator is operative at an early developmental stage. In contrast, pulse amplitude increased 2-fold between 3 and 7 div, and again between 7 and 14 div, suggesting maturation in synthesizing and/or secretory mechanisms. To evaluate these possibilities, total GnRH-1 content was measured. Only a small increase in GnRH-1 content was detected between 7 and 14 div, whereas a large increase occurred between 14 and 21 div. These data indicate that GnRH-1 content was not a limiting factor for the amplitude of the pulses at 7 div but that the secretory mechanisms mature between 3 and 14 div. The application of kisspeptin-10 revealed the ability of GnRH-1 neurons to integrate signals from natural ligands into a secretory response. Finally, simultaneous sampling of medium and calcium imaging recordings indicated that the synchronized calcium events and secretory events are congruent.


Endocrinology ◽  
2005 ◽  
Vol 146 (2) ◽  
pp. 784-789 ◽  
Author(s):  
Nicolas R. Vulliémoz ◽  
Ennian Xiao ◽  
Linna Xia-Zhang ◽  
Sharon L. Wardlaw ◽  
Michel Ferin

Abstract Agouti-related peptide (AGRP), an endogenous melanocortin receptor antagonist, is a powerful orexigenic peptide when infused centrally. AGRP and neuropeptide Y (NPY), another orexigenic peptide, are colocated within the same neurons in the arcuate nucleus. Both NPY and AGRP mRNA expression increases during food restriction, a condition that is known to suppress the GnRH pulse generator and reproductive function. Although NPY has been shown previously to suppress LH secretion in the ovariectomized monkey, data on AGRP are lacking. In this study, we examined the effect of AGRP infusion into the third ventricle on pulsatile LH release in five adult monkeys. The 8-h protocol included a 3-h intraventricular saline infusion to establish baseline pulsatile LH release, followed by a 5-h infusion of AGRP (83–132) [5 μg/h (n = 1) or 10 μg/h (n = 4)]. In separate experiments, each animal received an 8-h saline treatment as a control. Blood samples were collected every 15 min for LH measurements. Cortisol levels were measured every 45 min. AGRP infusion significantly decreased LH pulse frequency (from a baseline of 0.74 ± 0.07 pulse/h to 0.36 ± 0.12 during AGRP infusion; P < 0.01) and mean LH concentrations (to 41.1 ± 7.5% of baseline by h 5 of AGRP infusion; P < 0.001). LH pulse amplitude was not modified by AGRP treatment. AGRP infusion also significantly increased cortisol release, as previously reported. The data demonstrate that central administration of AGRP inhibits pulsatile LH release in the monkey and suggest that AGRP, like NPY, may mediate the effect of a negative energy balance on the reproductive system by suppressing the GnRH pulse generator.


1993 ◽  
Vol 58 (4) ◽  
pp. 448-453 ◽  
Author(s):  
Sung-Keun Park ◽  
Mark W. Keenan ◽  
Michael Selmanoff

1991 ◽  
Vol 125 (6) ◽  
pp. 614-620 ◽  
Author(s):  
Jacques Allouche ◽  
Antoine Bennet ◽  
Pierre Barbe ◽  
Monique Plantavid ◽  
Philippe Caron ◽  
...  

Abstract. LH nocturnal pulsatility and bioactivity to immunoreactivity (B/I) ratio were determined in 16 patients with anorexia nervosa-related hypothalamic amenorrhea and low sex steroid levels, and in 12 normal women in the midfollicular phase. The patients were subdivided into 2 groups: IA (N=7) without, and IB (N=9) with documented recent weight gain. Blood samples were taken from each subject at 10-min intervals from 00.00 to 06.00 h. Immunoreactive LH data were analysed with cluster analysis algorithm. A pool of aliquots from all the samples was used to evaluate bioactive LH, immunoreactive LH and LH B/I ratio in each subject. LH pulse frequency was lower in Group IA than in controls, whereas it did not differ significantly between Group IB and controls. LH pulse amplitude was lower in Group IA, and higher in Group IB than in controls. LH B/I ratio was below the control range in 3/16 patients. In conclusion, persistent hypothalamic amenorrhea does not require a permanent inhibition of the GnRH pulse generator; transient inhibition of pulsatility and qualitative abnormalities of gonadotropins could be involved in the mechanism, at least in some patients.


Endocrinology ◽  
2001 ◽  
Vol 142 (7) ◽  
pp. 2929-2936 ◽  
Author(s):  
Cheryl L. Sisk ◽  
Heather N. Richardson ◽  
Patrick E. Chappell ◽  
Jon E. Levine

Abstract Pubertal development in female rats is characterized by increased LH levels and the appearance of estrogen-dependent afternoon LH mini-surges. In these studies we performed the first analysis of GnRH patterns in peripubertal rats to determine whether there are similar changes in pulsatile GnRH release. Microdialysis samples were collected at 5-min intervals throughout a 5-h afternoon period from 22 rats sampled on a single day between 30–47 days of age. Adult female rats were sampled on proestrus for comparison. In 30- to 33-day-old rats, GnRH release was infrequent (2.7 pulses/5 h; n = 3), whereas intermediate pulse frequencies were observed in 34- to 37-day-old rats (6.4 pulses/5 h; n = 9) and 38- to 42-day-old (5.0 pulses/5 h; n = 5) rats. The highest GnRH pulse frequencies were observed in 43- to 47-day-old rats (9.4 pulses/5 h; n = 5). Mean GnRH pulse amplitude did not vary significantly with age. Animals sampled before vaginal opening (VO) exhibited significantly slower GnRH pulse frequencies than those sampled after vaginal opening (1.3 pulses/5 h pre-VO vs. 7.6 pulses/5 h post-VO; P= 0.01). An afternoon increase in GnRH secretion, defined operationally as a greater than 25% increase in mean GnRH levels in the last half of the sampling period and tentatively termed a mini-surge, was observed in 0%, 33%, 40%, and 60% of 30- to 33-, 34- to 37-, 38- to 42-, and 43- to 47-day-old rats, respectively. An overall increase in GnRH pulse frequency was observed in females displaying a mini-surge (9.0 pulses/5 h with mini-surge compared with 4.7 pulses/5 h with no mini-surge). The mini-surge itself, however, was associated with a late afternoon increase in GnRH pulse amplitude and not in pulse frequency. In adult proestrous rats, peak levels during the GnRH surge were an order of magnitude greater than those reached in pubertal animals. Our findings demonstrate that pubertal maturation in the female rat is associated with an acceleration of GnRH pulse generator activity and that later stages of pubertal maturation are characterized by the appearance of afternoon increases in GnRH release that may underlie previously reported mini-surges in LH.


1989 ◽  
Vol 123 (2) ◽  
pp. 347-359 ◽  
Author(s):  
F. C. W. Wu ◽  
S. M. Borrow ◽  
K. Nicol ◽  
R. Elton ◽  
W. M. Hunter

ABSTRACT The onset of puberty is characterized by a sleep-associated increase in pulsatile LH secretion which is not observed in adults. The ontogeny of gonadotrophin secretion during pubertal maturation may reflect changes in endogenous LHRH secretion, pituitary sensitivity to LHRH and/or alterations in gonadal steroid feedback. To understand the interplay between these mechanisms, we have examined the pulsatile pattern of plasma LH, FSH, testosterone, oestradiol and prolactin between 20.00 and 09.00 h and the pituitary response to repeated exogenous LHRH stimulation in 16 boys with delayed puberty (age 16·3±2·7 (s.e.m.) years) on one to four occasions in a mixed longitudinal/cross-sectional analysis. Physical maturity was determined by Tanner G staging (1–5) and clinical progress followed for a mean duration of 22·4 ± 8·5 months during which 33 hormone profiles were obtained. Nocturnal (23.00–09.00 h) LH pulse frequency increased to a peak of 0·54±0·03/h at stage 2 which was followed by a gradual decline to 0·42 ± 0·04/h at stage 5. The appearance of LH pulses in the evening (20.00–23.00 h), probably representative of the rest of the day, was delayed until mid-puberty from which point frequency increased to a peak of 0·53 ±0·08/h at stage 5. LH pulse amplitude showed a linear increase from stages 1 to 5, with nocturnal pulse amplitudes being higher than evening pulses throughout. FSH did not show a clear pulsatile pattern. The LH: FSH ratio reversed from < 1 to > 1 at stage 2. The LH response to exogenous LHRH increased in parallel with LH pulse amplitude. There was no difference in the pattern of LH response to repeated LHRH stimulation as puberty advanced; the first stimulus always elicited a greater response than subsequent doses. In contrast, the FSH response to LHRH was maximal at stage 1 and became attenuated thereafter. The estimated mean nocturnal LHRH concentration or amplitude did not show any increase during pubertal maturation from 20·42±11·57 at stage 1 to 35·96 ± 20·83 ng/l at stage 5. In conclusion, the sequential changes in this study suggest that the sleep-entrained increase in LHRH pulse frequency plays a key role at the onset of puberty. By enhancing pituitary responsiveness and setting in motion a cascade of events, this peripubertal augmentation of LHRH pulse frequency can account for most of the subsequent changes in LH, FSH and testosterone secretion during pubertal development in the male without any apparent alteration in LHRH pulse amplitude. Journal of Endocrinology (1989) 123, 347–359


2015 ◽  
Vol 100 (3) ◽  
pp. 1062-1070 ◽  
Author(s):  
N. D. Shaw ◽  
J. P. Butler ◽  
S. Nemati ◽  
T. Kangarloo ◽  
M. Ghassemi ◽  
...  

Context: During puberty, reactivation of the reproductive axis occurs during sleep, with LH pulses specifically tied to deep sleep. This association suggests that deep sleep may stimulate LH secretion, but there have been no interventional studies to determine the characteristics of deep sleep required for LH pulse initiation. Objective: The objective of this study was to determine the effect of deep sleep fragmentation on LH secretion in pubertal children. Design and Setting: Studies were performed in a clinical research center. Subjects: Fourteen healthy pubertal children (11.3–14.1 y) participated in the study. Interventions: Subjects were randomized to two overnight studies with polysomnography and frequent blood sampling, with or without deep sleep disruption via auditory stimuli. Results: An average of 68.1 ±10.7 (± SE) auditory stimuli were delivered to interrupt deep sleep during the disruption night, limiting deep sleep to only brief episodes (average length disrupted 1.3 ± 0.2 min vs normal 7.1 ± 0.8 min, P &lt; .001), and increasing the number of transitions between non-rapid eye movement (NREM), REM, and wake (disrupted 274.5 ± 33.4 vs normal 131.2 ± 8.1, P = .001). There were no differences in mean LH (normal: 3.2 ± 0.4 vs disrupted: 3.2 ± 0.5 IU/L), LH pulse frequency (0.6 ± 0.06 vs 0.6 ± 0.07 pulses/h), or LH pulse amplitude (2.8 ± 0.4 vs 2.8 ± 0.4 IU/L) between the two nights. Poisson process modeling demonstrated that the accumulation of deep sleep in the 20 minutes before an LH pulse, whether consolidated or fragmented, was a significant predictor of LH pulse onset (P &lt; .001). Conclusion: In pubertal children, nocturnal LH augmentation and pulse patterning are resistant to deep sleep fragmentation. These data suggest that, even when fragmented, deep sleep is strongly related to activation of the GnRH pulse generator.


2010 ◽  
Vol 298 (1) ◽  
pp. R70-R78 ◽  
Author(s):  
Michael J. Woller ◽  
Pam L. Tannenbaum ◽  
Nancy J. Schultz-Darken ◽  
Bruce D. Eshelman ◽  
David H. Abbott

The present study was conducted to quantify in vitro gonadotropin-releasing hormone (GnRH) release parameters in the male marmoset. We established primary cultures of marmoset hypothalamic tissues for ∼2 days (marmosets) to assess GnRH release profiles in vitro in hypothalamic explants from testis-intact and gonadectomized males. Pulsatile GnRH release profiles were readily demonstrated from in vitro hypothalamic explants isolated from adult male marmoset monkeys. Gonadectomy of male marmosets resulted in elevated mean GnRH and pulse amplitude from hypothalamic explants on the 1st day of culture ( day 0). GnRH pulse amplitude increased by day 2 in ∼67% of hypothalamic explants from testis-intact marmosets, suggesting release from an endogenous regulator of GnRH. We also measured GnRH release profiles in vitro in hypothalamic explants from testis-intact and gonadectomized rats. Male rats showed no changes in any concentration or frequency release parameters for GnRH following gonadectomy or during successive days in culture. The present study represents a unique examination of GnRH release from male marmoset monkey hypothalamic tissue and compares release dynamics directly with those obtained from male rat, suggesting a species difference in feedback regulation of GnRH release.


Animals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 424
Author(s):  
Radoslaw Piotr Radzki ◽  
Marek Bienko ◽  
Dariusz Wolski ◽  
Monika Ostapiuk ◽  
Pawel Polak ◽  
...  

Our study aimed to verify the hypothesis of the existence of a programming effect of parental obesity on the growth, development and mineralization of the skeletal system in female and male rat offspring on the day of weaning. The study began with the induction of obesity in female and male rats of the parental generation, using a high-energy diet (group F). Females and males of the control group received the standard diet (group S). After 90 days of dietary-induced obesity, the diet in group F was changed into the standard. Rats from groups F and S were mated to obtain offspring which stayed with their mothers until 21 days of age. Tibia was tested using dual-energy X-ray absorptiometry (DXA), peripheral quantitative computed tomography (pQCT), micro-computed tomography (µCT) and mechanical strength using the three-point bending test. Biochemical analysis of blood serum bone metabolism markers was performed. DXA analysis showed higher tibia bone mineral content (BMC) and area. pQCT measurements of cortical and trabecular tissue documented the increase of the volumetric bone mineral density and BMC of both bone compartments in offspring from the F group, while µCT of the trabecular tissue showed an increase in trabecular thickness and a decrease of its separation. Parental obesity, hence, exerts a programming influence on the development of the skeletal system of the offspring on the day of the weaning, which was reflected in the intensification of mineralization and increased bone strength.


Sign in / Sign up

Export Citation Format

Share Document