scholarly journals A combination of Lactobacillus buchneri and Pediococcus pentosaceus extended the aerobic stability of conventional and BMR-corn hybrids ensiled at low dry matter concentrations by causing a major shift in their bacterial and fungal community

Author(s):  
J J Romero ◽  
J Park ◽  
Y Joo ◽  
Y Zhao ◽  
M Killerby ◽  
...  

Abstract We evaluated the effects of applying a combination inoculant to 4 corn hybrids harvested at high moisture on their nutritive value and microbial populations. The treatment design was the factorial combination of corn hybrids ensiled with (INO) and without (CON) inoculant. The hybrids were TMF2R737 (MCN), F2F817 (MBR), P2089YHR (PCN), and PI144XR (PBR), ensiled at dry matter (DM) concentrations of 30.5, 26.3, 31.1, and 31.5%, respectively; MBR and PBR were brown midrib mutants (BMR). The inoculant contained Lactobacillus buchneri and Pediococcus pentosaceus (4 × 10 5 and 1 × 10 5 cfu/g of fresh corn). The experiment had a complete randomized design with treatments replicated 6 times. Corn was treated or not with inoculant, packed into 7.6L bucket silos, and stored for 100 d. At d 0, the relative abundance (RA, %) of Enterobacteriaceae was lower in PBR vs. the other hybrids [51.3 vs x= (average of) 58.4] and in the case of fungi, incertae sedis (i.s.) Tremellales and Mucoraceae were more and less abundant, respectively, in conventional hybrids vs. BMRs (x= 25.8 vs. x= 13.9 and x= 3.64 vs. x= 7.52; P < 0.04). After ensiling, INO had higher LAB (9.3 vs. 7.1 log cfu/g of fresh corn) and acetic acid (3.44 vs. 1.32% of DM) and lower yeast (3.1 vs. 4.6) and molds (1.5 vs. 3.0), and also extended the aerobic stability (582 vs. 111h) but decreased DM recovery (95.6 vs. 97.4%) vs. CON (P < 0.02). Inoculation reduced bacterial phylogenetic diversity (6.75 vs. 14.4) but increased fungal observed taxonomical units (46 vs. 20) vs. CON (P < 0.01). Also, a higher relative abundance (RA) for Lactobacillaceae (99.2 vs. 75.7%) and lower for Enterobacteriaceae (0.28 vs. 9.93) was observed due to inoculation (P < 0.001). For fungi, INO had a lower RA compared to CON for Monascaceae (12.6 vs. 44.7) and increased i.s. Tremellales (8.0 vs. 1.2) and i.s. Saccharomycetales (6.4 vs. 0.3%; P < 0.006). Inoculation changed the diverse bacterial community found in the phyllosphere across hybrids to a taxonomically uneven one dominated by Lactobacillaceae. In the case of fungi, INO application increased the fungal diversity at d 100 mainly by reducing the dominance of Monascaceae vs. CON. In conclusion, the INO treatment overwhelmed the disparate microbial populations found across BMR and conventional hybrids ensiled at low DM concentrations and ensured a significant concentration of acetic acid that modified fungal populations and in turn extended the aerobic stability of all hybrids.

2020 ◽  
Vol 158 (5) ◽  
pp. 438-446
Author(s):  
E. F. S. Faria ◽  
T. C. da Silva ◽  
D. dos S. Pina ◽  
E. M. Santos ◽  
M. L. G. M. L. de Araújo ◽  
...  

AbstractThis study aimed to examine the effects of re-ensiling time and Lactobacillus buchneri on the fermentation profile, chemical composition and aerobic stability of sugarcane silages. The experiment was set up as a repeated measure design consisting of four air-exposure periods (EP)(0, 6, 12, and 24 h) microbial additive (A) (L. buchneri; or lack of there), with five replicates. Sugarcane was ground through a stationary forage chopper and ensiled in four plastic drums of 200-L capacity. After 210 days of storage, the drums were opened and half of the silage mass was treated with L. buchneri at the concentration of 105 cfu/g of forage. Subsequently, the silages were divided into stacks. The re-ensiling process was started immediately, at 0, 6, 12 and 24-hour intervals, by transferring the material to PVC mini-silos. Silos were opened after 120 days of re-ensiling. The use of L. buchneri reduced butyrate concentration but did not change ethanol or acetic acid concentrations and aerobic stability. An interaction effect between L. buchneri and re-ensiling time was observed for dry matter (DM) losses and composition. Lactobacillus buchneri is not effective in improving aerobic stability in re-ensiled sugarcane silages. However, less DM is lost in silages treated with L. buchneri and exposed to air for 24 h. Re-ensiling sugar cane in up to 24 h of exposure to air does not change final product quality.


2010 ◽  
Vol 39 (1) ◽  
pp. 88-96 ◽  
Author(s):  
Anna Paula de Toledo Piza Roth ◽  
Ricardo Andrade Reis ◽  
Gustavo Rezende Siqueira ◽  
Marcella de Toledo Piza Roth ◽  
Flávio Dutra de Resende ◽  
...  

This trial aimed to evaluate the effects of the time post-burning, and additives on fermentative characteristics, losses and chemical composition on the sugar cane silage. The sugar cane variety IAC 86-2480 was ensiled on the 1, 4, 7, 10 and 14 days after burning. The additives evaluated were: control (Cont.), Lactobacillus buchneri (LB), Calcium oxide micro pulverized (CO), and Lactobacillus buchneri (LB) plus Calcium oxide micro pulverized (LB + CO). The yeast population was determined before ensiled. After 56 days of the fermentation period the silos were opening to take samplings. The experimental design was a completely randomized design, in a factorial scheme (additive and burning time) with seven treatments and four replications. The sugar cane was recontaminated with yeast, the populations increased from 5.04 to 6.48 log cfu/g of forage. Dry matter content decreased after fermentation period in average 7.6 units, compared to the sugar cane forage before ensilage. Control and LB silage showed lowest dry matter recovery (DMR), 613 g/kg and 631 g/kg, respectively, compared to the Cal and LB + Cal, 807 g/kg and 832 g/kg. This fact probably was associated to the calcium oxide control on the yeast populations. In relation to the time post-burning, the greatest changes were observed in the gas production and DMR. Gas production were higher in the first days post-burning and decreased in response to the prolongation time post-burning. The time post-burning alters the nutritive value of the fresh sugarcane and its silage and also the size of the losses from the ensilage process.


Agriculture ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 95
Author(s):  
Mariele Nascimento Agarussi ◽  
Odilon Pereira ◽  
Leandro da Silva ◽  
Vanessa da Silva ◽  
Rosinea de Paula ◽  
...  

The aerobic deterioration of silage nutrients is inevitable in tropical countries, causing negative consequences in animal production systems. Aiming to minimize the losses, the effects of Lactobacillus buchneri strains on fermentation profile and aerobic stability of corn silages were evaluated. The experiment was conducted under a completely randomized design with 13 treatments and three replicates. The treatments were noninoculated, commercial L. buchneri (CI), and 11 wild strains of L. buchneri: LB-56.1, LB-56.2, LB-56.4, LB-56.7, LB-56.8, LB-56.9, LB-56.21, LB-56.22, LB-56.25, LB-56.26, and LB-56.27. The treatments could be divided into three different groups according to silage pH and acetic acid concentration. Silages inoculated with LB-56.1, LB-56.4, and LB-56.9 presented higher pH, whereas intermediate values were observed for LB-56.2, LB-56.7, and LB-56.8. The highest acetic acid production was observed for LB-56.1 and LB-56.7. On the other hand, lowest concentrations were found for CI, LB-56.22, LB-56.25, LB-56.26, and LB-56.27. Higher amounts of NH3–N were observed for LB-56.8, LB-56.21, LB-56.22, and LB-56.27 silages than others. Silage inoculation with CI, LB-56.1, LB-56.2, LB-56.4, LB-56.8, LB-56.9, and LB-56.25 strains had higher aerobic stability than others (59.7 vs. 41.2 h). The L. buchneri strains LB-56.1, LB-56.2, LB-56.4, LB-56.8, LB-56.9, and LB-56.25 provided potential features to improve the aerobic stability of corn silage.


Agriculture ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 590
Author(s):  
Zhipeng Huang ◽  
Musen Wang ◽  
Wencan Ke ◽  
Xusheng Guo

The study was conducted to screen high 1,2-propanediol produced by Lactobacillus buchneri strains, isolated from baled silages stored for 1 or 2 years, and to evaluate their effects on fermentation quality and aerobic stability of whole-plant corn silage. In total, 31 L. buchneri strains were isolated from alfalfa, whole-plant corn and oat silages. Based on growth performance and 1,2-propanediol and acetic acid production, two strains, L. buchneri 9-2 and L. buchneri 10-1, from alfalfa silage, were further assessed in an ensiling trial on whole-plant corn. The corn silage inoculated with L. buchneri 9-2 or L. buchneri 10-1 had a higher concentration of 1,2-propanediol (34.7 or 34.6 g/kg dry matter (DM)) and acetic acid (47.2 or 45.9 g/kg DM) in comparison with L. buchneri 40788 (reference strain) treated silage (19.5 and 35.9 g/kg DM) after 90 d of fermentation. In addition, these two strains performed better in improving silage aerobic stability relative to control and L. buchneri 40788. The results above indicated that L. buchneri 9-2 and L. buchneri 10-1 could be candidate strains to increase 1,2-propanediol and acetic acid concentrations and improve the aerobic stability of whole-plant corn silage.


2021 ◽  
Vol 53 (1) ◽  
pp. 309-319
Author(s):  
Ana Paula Maia Dos Santos ◽  
Edson Mauro Santos ◽  
Juliana Silva de Oliveira ◽  
Gleidson Giordano Pinto de Carvalho ◽  
Gherman Garcia Leal de Araújo ◽  
...  

We evaluated the effects of urea addition on gas and effluent losses, fermentation profile, microbial populations, aerobic stability and chemical composition of corn silages. A completely randomised design with five levels of urea (0, 0.5, 1.0, 1.5, and 2.0% based on dry matter) and five replicates was used. A decreasing linear effect of urea levels on effluent losses in corn silages was observed. In parallel, an increasing linear effect of urea levels on pH, increasing from 3.49 to 4.12 in silages without urea in relation to silages with the maximum urea level, was also observed. Urea addition improved the aerobic stability of the silages, with 62 h for the silages without urea and from 90 to >96 h for the silages with urea. Based on the results of the principal components, two groups (I and II) could be distinguished. The most discriminating variables in group I were dry matter (-0.9), pH (-1.2) and lactic acid bacteria (-0.9), while in group II, effluent losses (1.0), ethanol (1.0), acetic acid (0.8) and gas losses (0.8) were most important. The use of urea at inclusion levels of around 2% in corn silage reduced gas losses, improved the nutritive value and promote the aerobic stability of silages. Highlights: The addition of urea in the corn silages increased the pH values from 3.49 (control) to 4.12 (2% of urea DM). The use of urea improved chemical composition of corn silages. The addition of urea reduced the moulds and yeast populations in the corn silages after exposure to air. Urea addition improved the aerobic stability of the corn silages.


Author(s):  
Ali Ameen Saeed ◽  
Saja Intisar Abid

This study was conducted in Nutrition Lab. to investigate the effect of the type and level of substitution of urea with ruminant manure, M (sheep, cow and buffalo) on basis of nitrogen (N) content on the nutritive value of rice straw silage (RSS). Accordingly silages were nominated as, S-RSS, C-RSS and B-RSS. Urea (U) was substituted with dried manure at 6 combinations, 100:0, 90:10, 80:20, 70:30, 60:40 and 50:50 of U:M. Silage samples were prepared by treating chopped straw with pre-treated solution contained 10% low quality debis and 2% urea. Results showed that lower (P˂0.01) DM loss (11.4%) was observed in S-RSS, and with addition of urea only (3.6%).        Samples of S-RSS and C-RSS recorded higher (P˂0.01) Fleig points (Fp) as compared with those prepared by the addition of B-RSS, 60.42, 55.58 and 49.59 respectively. Reduction (P˂0.01) in this parameter was noticed in samples prepared with a combination of 100:0. Aerobic stability (AS) was a reduced (P˂0.01) in samples prepared by addition of S-RSS by 15 and 13 hours in comparison with samples of C-RSS and B-RSS respectively. Samples prepared with combination of 100:0 were prior (P˂0.01) as compared with other samples.        Results also showed an increase (P˂0.01) in in vitro digestibility of organic matter (IVOMD) in samples of S-RSS in comparison with samples prepared by addition of C-RSS and B-RSS, 49.99, 44.59 and 42.77% respectively. Samples prepared with combination of 100:0 recorded lower (P˂0.05) in vitro digestibility of dry matter (IVDMD) as compared with combinations of 70:30 and 60:40 of U: M, 40.52, 45.36 and 45.94% respectively.


1991 ◽  
Vol 71 (1) ◽  
pp. 107-114 ◽  
Author(s):  
Z. Mir ◽  
S. Bittman ◽  
L. Townley-Smith

Two trials were conducted to evaluate the voluntary intake and digestibility of kochia (Kochia scoparia) as hay or silage for sheep. In Trial 1, kochia (KOC) hay substituted for alfalfa hay (AA) at 0, 25, 50 or 75% of complete diets, or 50% AA or 50% KOC with barley (BAR) were fed to 24 mature wethers in a completely randomized design experiment. As the level of KOC in the diet increased, dry matter intake (DMI) of wethers decreased linearly. There were no differences (P > 0.05) in dry matter or fiber digestibilities among the four diets containing AA and KOC hay. Nitrogen and gross energy digestibilities increased linearly (P < 0.05) with decreasing levels of dietary KOC. In trial 2, KOC silage prepared from two ecotypes of KOC (southern and northern), cut at two different dates and fed in a 50:50 combination with AA silage were compared with a diet containing AA silage. DMI and nutrient digestibilities of the AA silage diet were higher (P < 0.05) than those for the diets containing KOC. Results indicate that KOC hay can be fed in high forage or concentrate diets at levels between 25 and 50% of the diet without adverse effects on intake or digestibility. Results also demonstrate that KOC can be preserved by ensiling and that KOC silage can be used in combination with AA silage in diets for sheep. Key words: Kochia, sheep, digestibility, hay, silage


2018 ◽  
Vol 53 (9) ◽  
pp. 1045-1052
Author(s):  
Mateus Merlo Coelho ◽  
Lúcio Carlos Gonçalves ◽  
José Avelino Santos Rodrigues ◽  
Kelly Moura Keller ◽  
Gustavo Vinícius de Souza dos Anjos ◽  
...  

Abstract: The objective of this work was to evaluate the effects of re-ensiling and bacterial inoculation on the quality of corn silage. The experiment was carried out in a 2x2 factorial design with or without inoculant (association of Lactobacillus plantarum and Propionibacterium acidipropionici), and with re-ensiling after 36 hours of aerobic exposure or only ensiling of the whole plant of 'BRS 1055' corn. The fermentative quality, nutritional parameters, dry matter losses, aerobic stability, and microbiological counts of silages were evaluated. Re-ensiling caused an increase of pH and in acetic acid and propionic acid concentrations, as well as in the dry matter (DM), crude protein, neutral detergent fiber, and neutral detergent fiber crude protein contents. Conversely, there was a reduction in the nonfiber carbohydrates concentration and in in vitro dry matter digestibility for the re-ensiled material. All changes were explained by the higher-effluent production and DM loss of re-ensiled material that was subjected to two compactions. Microbiology was not altered by the treatments. The use of inoculant altered ash content, but it did not influence other parameters. In contrast, re-ensiling after 36 hours of aerobic exposure caused a reduction in the nutritive value of corn silage and accentuated the DM losses.


Sign in / Sign up

Export Citation Format

Share Document