scholarly journals Effect of urea on gas and effluent losses, microbial populations, aerobic stability and chemical compositivo of corn (Zea mays L.) silage

2021 ◽  
Vol 53 (1) ◽  
pp. 309-319
Author(s):  
Ana Paula Maia Dos Santos ◽  
Edson Mauro Santos ◽  
Juliana Silva de Oliveira ◽  
Gleidson Giordano Pinto de Carvalho ◽  
Gherman Garcia Leal de Araújo ◽  
...  

We evaluated the effects of urea addition on gas and effluent losses, fermentation profile, microbial populations, aerobic stability and chemical composition of corn silages. A completely randomised design with five levels of urea (0, 0.5, 1.0, 1.5, and 2.0% based on dry matter) and five replicates was used. A decreasing linear effect of urea levels on effluent losses in corn silages was observed. In parallel, an increasing linear effect of urea levels on pH, increasing from 3.49 to 4.12 in silages without urea in relation to silages with the maximum urea level, was also observed. Urea addition improved the aerobic stability of the silages, with 62 h for the silages without urea and from 90 to >96 h for the silages with urea. Based on the results of the principal components, two groups (I and II) could be distinguished. The most discriminating variables in group I were dry matter (-0.9), pH (-1.2) and lactic acid bacteria (-0.9), while in group II, effluent losses (1.0), ethanol (1.0), acetic acid (0.8) and gas losses (0.8) were most important. The use of urea at inclusion levels of around 2% in corn silage reduced gas losses, improved the nutritive value and promote the aerobic stability of silages. Highlights: The addition of urea in the corn silages increased the pH values from 3.49 (control) to 4.12 (2% of urea DM). The use of urea improved chemical composition of corn silages. The addition of urea reduced the moulds and yeast populations in the corn silages after exposure to air. Urea addition improved the aerobic stability of the corn silages.

2021 ◽  
Vol 51 (3) ◽  
pp. 191-198
Author(s):  
Juliana Schuch PITIRINI ◽  
Rosana Ingrid Ribeiro dos SANTOS ◽  
Francy Manoely da Silva LIMA ◽  
Ilano Silva Braga do NASCIMENTO ◽  
Jehmison de Oliveira BARRADAS ◽  
...  

ABSTRACT The use of cassava root silage for animal feeding is a suitable option for farmers who grow cassava as an alternative product and for cattle ranchers who have to deal with high prices of corn. Our objective was to determine the effects of cassava genotypes and the correction of soil acidity on the microbial population, fermentation characteristics, chemical composition, aerobic stability and losses of cassava root silage. We used a 2 × 3 factorial design in completely randomized blocks, with four replications. We evaluated two cassava genotypes (Caeté and Manteiguinha) and three methods of soil acidity correction (lime, gypsum, and lime+gypsum). The roots were harvested 11 months after planting, ensiled in PVC silos, and stored for 45 days. No interaction was observed between genotypes and soil acidity correction for any of the evaluated parameters. The silage of Caeté genotype showed the highest concentration of dry matter (421 g kg-1 fresh matter) and non-fibrous carbohydrates (893 g kg-1 dry matter), and the lowest concentrations of neutral detergent fiber (37.1 g kg-1 dry matter) . No significant differences were observed among treatments for lactic acid bacteria, yeast and mold counts in silages. Both genotypes resulted in silages with an adequate fermentation profile and considerably high aerobic stability, but with high effluent loss. The Caeté genotype showed to be potentially better for silage production due to its higher dry matter recovery. Due to the high level of effluent loss, it is recommended to test the effect of a moisture-absorbing additive during the ensiling process of these cassava roots.


2017 ◽  
Vol 52 (8) ◽  
pp. 679-689 ◽  
Author(s):  
Poliane Meire Dias de Freitas ◽  
Gleidson Giordano Pinto de Carvalho ◽  
Edson Mauro Santos ◽  
Gherman Garcia Leal Araújo ◽  
Juliana Silva de Oliveira ◽  
...  

Abstract: The objective of this work was to evaluate the effects of urea ammoniation of pearl millet silage, at different compaction densities, on chemical composition, losses in the ensilage process, fermentation profile, microbial population count, and aerobic stability. The experimental design was completely randomized, in a 2×4 factorial arrangement, with two compaction densities (600 and 800 kg m-3) and four urea levels (0, 2, 4, and 6% on a dry matter basis), with five replicates. For the aerobic stability assay, the experimental design was completely randomized, in a 2×4 factorial arrangement, with two times (0 and 72 hours) and four urea levels (0, 2, 4, and 6%, on dry matter basis), with five replicates. The urea levels interacted significantly with density as to the contents of organic matter, crude protein, neutral detergent insoluble protein, and as to dry matter recovery; and with exposure hours as to the contents of acid detergent fiber and lignin. Molds and yeasts were not observed in the ammoniated silages. The 800 kg m-3 density reduced losses in the fermentation process of pearl millet silage, and promoted better nutritive value than the compaction at 600 kg m-3. The use of urea does not reduce losses and does not improve the aerobic stability of silages; however, it controls mold growth after silage exposure to air.


2021 ◽  
Vol 9 (1) ◽  
pp. 34-42
Author(s):  
Françoise Mara Gomes ◽  
Karina Guimarães Ribeiro ◽  
Igor Alexandre De Souza ◽  
Janaina De Lima Silva ◽  
Mariele Cristina Nascimento Agarussi ◽  
...  

The study evaluated chemical composition, fermentation profile, microbial population and dry matter recovery of silages made from mixtures of palisade grass (Urochloa brizantha cv. Marandu) and forage peanut (Arachis pintoi cv. Belmonte). The experiment was conducted and analyzed in a complete randomized factorial design using 5 levels of each forage (0, 25, 50, 75 and 100% on a fresh matter basis), with and without microbial inoculant and 3 replications. The crude protein concentration increased linearly (P<0.05) and fiber concentration decreased linearly (P<0.05) as forage peanut level in silage increased. There was a positive quadratic effect (without inoculant) and positive linear effect (with inoculant) on lactic acid concentration (P<0.05) and a positive quadratic effect (P<0.05) on lactic acid bacteria population with increasing forage peanut levels in silage. The main effects of the addition of forage peanut to palisade grass at ensiling were improvement in the chemical composition and fermentation profile of the grass silage. We recommend adding 25–75% forage peanut to palisade grass prior to ensiling to improve the quality of the resulting silage but there is little merit in adding microbial inoculant to the forage at ensiling. Feeding studies with animals would verify potential benefits in production from inclusion of legume with grass at ensiling, while studies with addition of energy sources at ensiling would determine any further benefits to be achieved in silage quality.


1969 ◽  
Vol 85 (3-4) ◽  
pp. 151-164
Author(s):  
Abner A. Rodríguez ◽  
José L. Martínez ◽  
Raúl Macchiavelli ◽  
Ernesto O. Riquelme

An experiment was conducted to evaluate the effect of three application rates (0,1 and 2 times the recommended rate) of a commercial additive containing a lactic acid-producing bacterial inoculant as well as plant cell walldegrading enzymes, on the microbial succession, fermentation end-products, and aerobic stability of guinea grass (Panicum maximum var. Jacq.) silage. Vegetative material was harvested at 30% dry matter (DM) and chopped into 2.5-cm pieces. At ensiling, three treatments were imposed: no additive (control), additive applied at recommended rate, and at 2x the recommended rate. Three silos per treatment were opened after 0, 2, 4, 7, 14, 28, and 56 d of fermentation, and siiage was analyzed for pH, microbial succession, chemical composition, fermentation end-products and aerobic stability. For aerobic stability determination, three silos per treatment were opened at the end of the fermentation period, and silage (400 g) was exposed to air for three days in Styrofoam containers lined with plastic. After 0 , 1 , and 3 d of aerobic exposure, silage was analyzed for pH, microbial populations (total bacteria, yeast and molds), water soluble carbohydrate content, fermentation end-products and in vitro dry matter degradability (IVDMD). Temperature was monitored daily and dry matter recovery (DMR) was calculated after 1 and 3 d of aerobic exposure. The addition of the commercial additive, applied one or two times the recommended rate, increased (P < 0.05) the lactic acid producing bacterial population and decreased (P < 0.05) conforms during early stages of the fermentation process, but did not influence the yeast and mold populations or the chemical composition of the resulting silage. Use of the inoculant-enzyme mixture also resulted in siiage with higher lactic acid content 56 days post ensiling. The silage additive did not inffuence pH, temperature, microbial populations, soluble carbohydrate content, IVDMD or DMR of guinea grass silage after exposure to air. In summary, use of the commercial additive applied at the recommended rate partially improved the fermentation characteristics of guinea grass silage, but did not enhance its aerobic stability. Increasing the application rate to twice the recommended rate did not result in better fermentation.


Author(s):  
J J Romero ◽  
J Park ◽  
Y Joo ◽  
Y Zhao ◽  
M Killerby ◽  
...  

Abstract We evaluated the effects of applying a combination inoculant to 4 corn hybrids harvested at high moisture on their nutritive value and microbial populations. The treatment design was the factorial combination of corn hybrids ensiled with (INO) and without (CON) inoculant. The hybrids were TMF2R737 (MCN), F2F817 (MBR), P2089YHR (PCN), and PI144XR (PBR), ensiled at dry matter (DM) concentrations of 30.5, 26.3, 31.1, and 31.5%, respectively; MBR and PBR were brown midrib mutants (BMR). The inoculant contained Lactobacillus buchneri and Pediococcus pentosaceus (4 × 10 5 and 1 × 10 5 cfu/g of fresh corn). The experiment had a complete randomized design with treatments replicated 6 times. Corn was treated or not with inoculant, packed into 7.6L bucket silos, and stored for 100 d. At d 0, the relative abundance (RA, %) of Enterobacteriaceae was lower in PBR vs. the other hybrids [51.3 vs x= (average of) 58.4] and in the case of fungi, incertae sedis (i.s.) Tremellales and Mucoraceae were more and less abundant, respectively, in conventional hybrids vs. BMRs (x= 25.8 vs. x= 13.9 and x= 3.64 vs. x= 7.52; P &lt; 0.04). After ensiling, INO had higher LAB (9.3 vs. 7.1 log cfu/g of fresh corn) and acetic acid (3.44 vs. 1.32% of DM) and lower yeast (3.1 vs. 4.6) and molds (1.5 vs. 3.0), and also extended the aerobic stability (582 vs. 111h) but decreased DM recovery (95.6 vs. 97.4%) vs. CON (P &lt; 0.02). Inoculation reduced bacterial phylogenetic diversity (6.75 vs. 14.4) but increased fungal observed taxonomical units (46 vs. 20) vs. CON (P &lt; 0.01). Also, a higher relative abundance (RA) for Lactobacillaceae (99.2 vs. 75.7%) and lower for Enterobacteriaceae (0.28 vs. 9.93) was observed due to inoculation (P &lt; 0.001). For fungi, INO had a lower RA compared to CON for Monascaceae (12.6 vs. 44.7) and increased i.s. Tremellales (8.0 vs. 1.2) and i.s. Saccharomycetales (6.4 vs. 0.3%; P &lt; 0.006). Inoculation changed the diverse bacterial community found in the phyllosphere across hybrids to a taxonomically uneven one dominated by Lactobacillaceae. In the case of fungi, INO application increased the fungal diversity at d 100 mainly by reducing the dominance of Monascaceae vs. CON. In conclusion, the INO treatment overwhelmed the disparate microbial populations found across BMR and conventional hybrids ensiled at low DM concentrations and ensured a significant concentration of acetic acid that modified fungal populations and in turn extended the aerobic stability of all hybrids.


Author(s):  
Ali Ameen Saeed ◽  
Saja Intisar Abid

This study was conducted in Nutrition Lab. to investigate the effect of the type and level of substitution of urea with ruminant manure, M (sheep, cow and buffalo) on basis of nitrogen (N) content on the nutritive value of rice straw silage (RSS). Accordingly silages were nominated as, S-RSS, C-RSS and B-RSS. Urea (U) was substituted with dried manure at 6 combinations, 100:0, 90:10, 80:20, 70:30, 60:40 and 50:50 of U:M. Silage samples were prepared by treating chopped straw with pre-treated solution contained 10% low quality debis and 2% urea. Results showed that lower (P˂0.01) DM loss (11.4%) was observed in S-RSS, and with addition of urea only (3.6%).        Samples of S-RSS and C-RSS recorded higher (P˂0.01) Fleig points (Fp) as compared with those prepared by the addition of B-RSS, 60.42, 55.58 and 49.59 respectively. Reduction (P˂0.01) in this parameter was noticed in samples prepared with a combination of 100:0. Aerobic stability (AS) was a reduced (P˂0.01) in samples prepared by addition of S-RSS by 15 and 13 hours in comparison with samples of C-RSS and B-RSS respectively. Samples prepared with combination of 100:0 were prior (P˂0.01) as compared with other samples.        Results also showed an increase (P˂0.01) in in vitro digestibility of organic matter (IVOMD) in samples of S-RSS in comparison with samples prepared by addition of C-RSS and B-RSS, 49.99, 44.59 and 42.77% respectively. Samples prepared with combination of 100:0 recorded lower (P˂0.05) in vitro digestibility of dry matter (IVDMD) as compared with combinations of 70:30 and 60:40 of U: M, 40.52, 45.36 and 45.94% respectively.


2015 ◽  
Vol 15 (2) ◽  
pp. 185
Author(s):  
Goce Cilev ◽  
Živko Gacovski ◽  
Biljana Petrovska ◽  
Jovan Stojković

This paper shows the results of production and chemical compo­sition of cow’s milk on a farm MILKO-HF, Prilep, R. Macedonia with capacity of 100 cows of Holstein-Frisian breed divided into two groups (control and experimental). In control group I which was fed in a standard way of nutrition (ration used on the farm), average daily production of milk per cow ws 22.49 kg with the following chemical composition of milk: average daily content of milk fat is 3.75%, protein 3.57%, lactose 4.65%, nonfat dry matter 9.56% and total dry matter 13.31%. In experimental group II which were fed with the ration according to normatives, average daily production of milk per cow is 24.04 kg with the following chemical composition of milk: average daily content of milk fat is 3.99%, protein 3.57%, lactose 4.65%, non-fat dry matter 9.58% and total dry matter 13.57%. The obtained results show the increase in milk production for 1.55 kg-6.89% and better chemical composition of milk in the experimental group of cows. Thus, dry matter was increased from 13.31% to 13.57%-1.95%, milk fat content from 3.75% to 3.99%-6.4%, nonfat dry matter from 9.56% to 9.58%-0.21%, while the content of protein and lactose stayed on equal level. It was determined that the normed nutrition has influenced on production increase and better chemical composition of milk without unnecessary spent high level of nutrient i.e. nutrition of cows according to recommended normative.


2014 ◽  
Vol 57 (4) ◽  
pp. 507-521 ◽  
Author(s):  
Joanna Ostrzycka ◽  
Marcin Horbowicz ◽  
Włodzimierz Dobrzański ◽  
Leszek S. Jankiewicz ◽  
Jan Borkowski

Tomatillo is widely cultivated in Mexico but is little known in other countries. The chemical composition of fruit from field grown plants was investigated during several vegetative seasons. Tomatillo contained a relatively high percentage of dry matter (7-10%) and extract (6.6-7.4%). Its potassium content was lower than that of tomato growing in the same conditions. The content of iron was higher, and that of other elements was comparable, depending on the conditions during the given year. The total sugar content amounted to 2.8-5.7%, depending on the selected population. The percentage of glucose and fructose decreased during ripening and that of saccharose increased. The content of pectic substances was similar as in tomato but the proportions of particular fractions was different. Tomatillo contained more acids than tomato, and showed an especially high citric and malic acid content. The latter decreased drastically during ripening. The content of oxalic acid was 11-18 mg 100 g<sup>-1</sup> in ripe fruit and up to 54 mg in unripe. The vitamin C content depended on the selected population and amounted to 8-21 mg 100 g<sup>-1</sup>, dehydroascorbic acid prevailing. The content of vitamin PP was 0.8-1.3 mg 100 g<sup>-1</sup>.


2020 ◽  
Vol 158 (5) ◽  
pp. 438-446
Author(s):  
E. F. S. Faria ◽  
T. C. da Silva ◽  
D. dos S. Pina ◽  
E. M. Santos ◽  
M. L. G. M. L. de Araújo ◽  
...  

AbstractThis study aimed to examine the effects of re-ensiling time and Lactobacillus buchneri on the fermentation profile, chemical composition and aerobic stability of sugarcane silages. The experiment was set up as a repeated measure design consisting of four air-exposure periods (EP)(0, 6, 12, and 24 h) microbial additive (A) (L. buchneri; or lack of there), with five replicates. Sugarcane was ground through a stationary forage chopper and ensiled in four plastic drums of 200-L capacity. After 210 days of storage, the drums were opened and half of the silage mass was treated with L. buchneri at the concentration of 105 cfu/g of forage. Subsequently, the silages were divided into stacks. The re-ensiling process was started immediately, at 0, 6, 12 and 24-hour intervals, by transferring the material to PVC mini-silos. Silos were opened after 120 days of re-ensiling. The use of L. buchneri reduced butyrate concentration but did not change ethanol or acetic acid concentrations and aerobic stability. An interaction effect between L. buchneri and re-ensiling time was observed for dry matter (DM) losses and composition. Lactobacillus buchneri is not effective in improving aerobic stability in re-ensiled sugarcane silages. However, less DM is lost in silages treated with L. buchneri and exposed to air for 24 h. Re-ensiling sugar cane in up to 24 h of exposure to air does not change final product quality.


2020 ◽  
Vol 42 ◽  
pp. e48272
Author(s):  
Maikon Figueredo Lemos ◽  
Alexandro Pereira Andrade ◽  
Pedro Henrique Ferreira da Silva ◽  
Camila Oliveira Santos ◽  
Caio Felipe Barros Souza ◽  
...  

The aim of this study was to evaluate nutritional value, fermentation losses, and aerobic stability of elephant grass silage (Pennisetum purpureum Schum.) treated with exogenous fibrolytic enzymes. The experiment was conducted in a completely randomized design with four replicates (experimental silos) and five levels of fibrolytic enzymes (0, 1.5, 3.0, 4.5 and 6.0%). For this, the elephant grass was ensiled at 70 days of age in plastic buckets with 20L capacity. Silos were opened 60 days after sealing. Analyses were made for chemical composition, in vitro dry matter digestibility (IVDMD), effluent losses (EL), gas losses (GL) and dry matter recovery (DMR), as well as the aerobic stability of the silage. Data were analyzed with PROC REG of SAS® University, at 5% probability. There was an increase in IVDMD content (p < 0.0001) and reduction in NDF and ADF contents (p < 0.0001) according to enzyme levels. These results were related to the increase in the degradation of fiber fractions. There were higher EL (p = 0.0062) as a function of enzyme levels and aerobic deterioration after silo opening, at all levels tested. Thus, it can be concluded that the exogenous fibrolytic enzymes change the chemical composition of elephant grass silage, and increase its digestibility and nutritional value. Moreover, when used alone as an additive, fibrolytic enzymes are not able to recover all dry matter of this silage (with effluent and gas losses), and are not able to maintain aerobic stability in the first hours after opening the silos.


Sign in / Sign up

Export Citation Format

Share Document