scholarly journals 98 Effect of engineered biocarbon on rumen fermentation, nutrient digestibility, methane emissions, and rumen microbiota in beef heifers

2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 82-83
Author(s):  
Stephanie Terry ◽  
Gabriel Ribeiro ◽  
Robert Gruninger ◽  
Alex Chaves ◽  
Karen Beauchemin ◽  
...  

Abstract The objective of this study was to examine the effect of engineered biocarbon (EB) on rumen fermentation, apparent total tract digestibility, methane (CH4) emissions and the rumen and fecal microbiome of Angus × Hereford heifers fed a barley silage-based diet. The experiment was a replicated 4 × 4 Latin square using 8 ruminally cannulated heifers (565 ± 35 kg initial BW). The basal diet contained 60% barley silage, 35% barley grain and 5% mineral supplement with EB added at 0% (control), 0.5%, 1.0%, or 2.0% (DM basis). Each period was 28-d consisting of 14-d adaptation and 14-d of measurements. Samples for profiling of the microbiome in rumen liquid, solids and feces were collected on d-15 before feeding. Rumen samples for fermentation characterization were taken at 0, 3, 6, and 12-h post feeding. Total collection of urine and feces was conducted from d-18 to 22. Heifers were housed in open-circuit respiratory chambers on d-26 to 28 to estimate CH4 emissions. Ruminal pH was recorded at 1-min intervals during CH4 measurements using indwelling pH loggers. Data were analyzed with the fixed effects of dietary treatment and random effects of square, heifer within square and period. Dry matter intake was similar across treatments (P = 0.21). NH3-N concentration and protozoa counts responded quadratically (P = 0.01) to EB. Minimum pH was increased (P = 0.04), and variation of pH was decreased (P = 0.03) by 2.0% EB. Total tract digestibility, N balance and CH4 production were not affected (P ≥ 0.17) by EB. EB affected the relative abundance of Fibrobacter (P = 0.05), Spirochaetaes (P = 0.01), Verrucomicrobia (P = 0.02), Tenericutes (P = 0.01), and Elusimicrobia (P = 0.02). Results suggest that at the examined concentrations, EB was ineffective at decreasing enteric CH4 emissions, however it altered the rumen microbiome.

2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 72-73
Author(s):  
Paul Tamayao ◽  
Tim A McAllister ◽  
Kim Ominski ◽  
Gabriel Ribeiro ◽  
Erasmus Okine ◽  
...  

Abstract This study investigated the effects of engineered biocarbon on nutrient digestibility, rumen fermentation, total gas and methane (CH4) emissions, and microbial protein synthesis in a rumen simulation technique (RUSITEC) fed a barley silage-based TMR. The basal diet consisted of 60% barley silage, 27% barley grain, 10% canola meal and 3% minerals. Three pine-based biocarbon products CP016, CP024 and CP028. were added at 2% of substrate DM. Biocarbons differed in bulk density, surface area, pore volume, pH, but had similar chemical compositions. Treatments were assigned to sixteen vessels (n = 4/treatment) in two RUSITEC apparatuses in a randomized block design. The experiment period was 17 d, with a 10-d adaptation and 7-d sample collection period. Data were analyzed using the PROC MIXED in SAS, with treatment (T), day (D) and TxD interactions as fixed effects and RUSITEC apparatus and fermenters as random effects. Compared to the control, biocarbon did not affect total gas (P = 0.98), the amount of CH4 produced per unit of DM incubated (P = 0.48) or per unit of DM digested (P = 0.27). Biocarbon treatments averaged 6.5 g of CH4 /g DM incubated and 9.06 g CH4 /g DM digested as compared to 7.1 g of CH4 /g DM incubated and 10.46 g CH4 / g DM digested in the control, respectively. Biocarbon CP024 had the greatest numerical reduction, followed by CP028 then CP016 in all CH4 associated parameters. Biocarbon addition did not affect the disappearance of DM (P = 0.63), OM (P = 0.34), CP (P = 0.48), NDF (P = 0.12), or VFA (P = 0.65) and ammonia N levels (P = 0.99) and protozoal counts (P = 0.72). The amount of bacterial nitrogen (mg/d) associated with feed particles increased (P < 0.003), suggesting that biocarbon may have enhanced colonization. In conclusion, engineered biocarbon did not reduce CH4 emissions in the RUSITEC.


2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 219-219
Author(s):  
Tao Ran ◽  
A M Saleem ◽  
Karen Beauchemin ◽  
G Penner ◽  
Wenzhu Yang

Abstract The objective was to investigate the effects of processing index (PI, weight after processing/weight before processing × 100) of barley grain and dietary undegradable fiber (uNDF, 240 h of incubation in rumen) concentration on chewing behavior (3 days, video recording) and feed sorting of finishing beef cattle. Six ruminally cannulated beef heifers (BW=715 kg) were used in a 6 × 6 Latin square design with 3 PI (65, 75 and 85%; fine, medium, coarse, respectively) × 2 uNDF concentrations (low and high; 4.6 vs. 5.6% of DM) factorial arrangement. Heifers were fed ad libitum a TMR consisting of 10% barley silage (low uNDF) or 5% silage and 5% chopped straw (high uNDF), 87% dry-rolled barley grain, and 3% vitamin and mineral supplement. An interaction of PI with uNDF occurred (P < 0.01) for DM intake, ruminating and total chewing time. Intake of DM (kg/d) did not differ (12.1) between low and high uNDF diets with 65 or 75% PI, whereas it was greater (P < 0.05) for high (12.7) than low (12.1) uNDF diets with 85% PI. Eating time (min/d) was not affected by PI but eating time (106 vs. 95 min/d; P = 0.03) and eating index (9.3 vs. 8.0 min/kg DM; P = 0.02) were greater with high than low uNDF diets. Ruminating (305 vs. 258 min/d) and total chewing (406 vs. 357 min/d) times were greater (P < 0.05) with high than low uNDF at 65% PI, with no effect of uNDF at 75 and 85% PI. Moreover, no interaction between PI and uNDF and no effect of PI on sorting index was observed. Heifers fed high vs. low uNDF diets sorted (P < 0.01) against long particles (>19 mm). These results suggest that when cattle are fed finely processed barley, increasing uNDF concentration of the diet may promote chewing and benefit rumen health.


2013 ◽  
Vol 93 (2) ◽  
pp. 261-268 ◽  
Author(s):  
N. Schlau ◽  
L. Duineveld ◽  
W. Z. Yang ◽  
T. A. McAllister ◽  
M. Oba

Schlau, N., Duineveld, L., Yang, W. Z., McAllister, T. A. and Oba, M. 2013. Precision processing barley grain did not affect productivity of lactating dairy cows. Can. J. Anim. Sci. 93: 261–268. This study evaluated the effects of precision processing (PP; processing based on kernel size) barley grain on ruminal fermentation and productivity of lactating dairy cows. Twenty multiparous Holstein cows, including eight ruminally cannulated cows, were used in a replicated 4×4 Latin square design with 21-d periods. Diets contained light barley grain processed precisely using a narrow roller setting (LB), heavy barley processed precisely using a wide roller setting (HB), processed HB and LB mixed at equal proportions (PP), or equal parts of light and heavy barley grain processed at a single narrow roller setting (CON). All diets consisted of 40% barley grain, 40% barley silage, and 20% of a supplement premix. Comparisons were made between LB and HB to evaluate the effect of barley quality, and between PP and CON to evaluate the effect of precision processing. Dry matter intake, sorting index, ruminal fermentation characteristics, and nutrient digestibility were not affected by diet. In addition, milk yield and concentrations of milk fat, protein, and lactose were not different, although milk urea nitrogen concentration was greater for PP vs. CON and for LB vs. HB. These results suggest that precision processing barley grain based on kernel size may not drastically affect ruminal fermentation and milk production in lactating dairy cows.


Author(s):  
Katelyn R Stehr ◽  
Stephanie A. Terry ◽  
Gabriel de Oliveira Ribeiro ◽  
Robert Gruninger ◽  
Gregory B. Penner ◽  
...  

Effect of calcium oxide (CaO) treatment of barley straw and salt on rumen fermentation, microbiota, digestibility, growth and carcass quality of cattle was assessed. A replicated 4 × 4 Latin square metabolism experiment was conducted using 8 heifers fed a wheat finishing diet with barley silage (B-SIL), barley straw (B-S), or 5.0% CaO-treated barley straw (CaOS) with or without NaCl (CaOS-NS). Growth over 115-d was assessed using 75 individually housed steers fed the above diets and an additional diet (I-CaOS), where CaO was added to straw just before feeding. There was no effect (P ≥ 0.08) of diet on rumen fermentation, digestibility or carcass quality, although CaO decreased (P < 0.001) maximum pH and retained Na was decreased (P < 0.05) by CaOS-NS. Rumen bacterial abundance was altered (P ≤ 0.05) by diet. The average daily gain (ADG) of B-SIL and CaOS-NS steers was 14.1% greater (P ≤ 0.05) than BS and CaOS steers, while the gain:feed of CaOS-NS steers was 14.2% greater (P ≤ 0.05) than B-S and CaOS steers. Steers fed I-CaO had similar ADG and gain:feed to other treatments. CaO-treated straw without NaCl could replace barley silage in wheat diets, without compromising digestibility or growth in steers.


2021 ◽  
pp. 1-13
Author(s):  
Paul Tamayao ◽  
Gabriel O. Ribeiro ◽  
Tim A. McAllister ◽  
Kim H. Ominski ◽  
Atef M. Saleem ◽  
...  

This study investigated the effects of three pine-based biochar products on nutrient disappearance, total gas and methane (CH4) production, rumen fermentation, microbial protein synthesis, and rumen microbiota in a rumen simulation technique (RUSITEC) fed a barley-silage-based total mixed ration (TMR). Treatments consisted of 10 g TMR supplemented with no biochar (control) and three different biochars (CP016, CP024, and CP028) included at 20 g·kg−1 DM. Treatments were assigned to 16 fermenters (n = 4 per treatment) in two RUSITEC units in a randomized block design for a 17 d experimental period. Data were analyzed using MIXED procedure in SAS, with treatment and day of sampling as fixed effects and RUSITEC unit and fermenters as random effects. Biochar did not affect nutrient disappearance (P > 0.05), nor total gas or CH4, irrespective of unit of expression. The volatile fatty acid, NH3-N, total protozoa, and microbial protein synthesis were not affected by biochar inclusion (P > 0.05). Alpha and beta diversity and rumen microbiota families were not affected by biochar inclusion (P > 0.05). In conclusion, biochar did not reduce CH4 emissions nor affect nutrient disappearance, rumen fermentation, microbial protein synthesis, or rumen microbiota in the RUSITEC.


2021 ◽  
pp. 1158-1164
Author(s):  
Anuthida Seankamsorn ◽  
Anusorn Cherdthong ◽  
Sarong So ◽  
Metha Wanapat

Background and Aim: Crude glycerin is changed to propionate in the rumen, while chitosan can be used as a feed supplement to increase propionic acid concentration and decrease methane (CH4) production. We hypothesized that supplementation with a combination of a high level of crude glycerin with chitosan could have a beneficial effect on ruminal fermentation and mitigate CH4 production. This study aimed to explore the combined effects of crude glycerin and chitosan supplementation on nutrient digestibility, rumen fermentation, and CH4 calculation in native Thai bulls. Materials and Methods: Four 2-year-old native Thai bulls, weighing 150±20 kg, were kept in a 2×2 factorial arrangement in a 4×4 Latin square design. Factor A represented the incorporation of crude glycerin at 10.5% and 21% of the dry matter (DM) of a total mixed ration (TMR), and factor B represented the supplementation of chitosan at 1% and 2% DM of a TMR. Results: Increasing levels of crude glycerin at 21% decreased DM intake by 0.62 kg/day compared with 10.5% crude glycerin (p<0.05), whereas nutrient digestibility did not change (p>0.05). The incorporated crude glycerin and supplemented chitosan levels did not affect the pH, temperature, concentrations of ammonia-nitrogen, microbial population, and blood urea nitrogen (p>0.05). Supplemented chitosan and incorporated crude glycerin did not show any interaction effects on the molar portions and total volatile fatty acids (VFAs), except estimated CH4. Increasing the incorporated crude glycerin levels increased propionate and decreased the ratio of acetate to propionate ratio, whereas levels of butyrate, acetate, and total VFAs were unchanged. The combination of crude glycerin at 21% in the TMR with chitosan at 2% reduced CH4 estimation by 5.08% compared with the other feed treatment. Conclusion: Increasing incorporated crude glycerin levels in a TMR significantly elevated the propionate concentration, whereas combining 21% crude glycerin in the TMR diet with 2% chitosan supplementation could depress CH4 estimation more effectively than adding one of these supplements alone.


Author(s):  
N. Suphrap ◽  
C. Wachirapakorn ◽  
C. Thamrongyoswittayakul and C. Wongnen

This study was conducted to investigate the effect of vegetable oil and yeast fermented cassava pulp (YFCP) supplementation on feed intake, nutrient digestibility and rumen fermentation in Thai Friesian dairy cows (Thai native x Holstein Friesian). Eight Thai Friesian dairy cows (447±44 kg.BW) were assigned to 4×4 double latin square design (DLSD) with two sources of oil i.e. palm oil (PO) or soybean oil (SBO) and four levels of YFCP (0, 5, 10 and 20%DM) in the dietary treatments. All cows received total mixed ration (TMR) comprised of rice straw to concentrate at a ratio of 40:60. The results showed that supplementation of SBO had lowered feed intake, nutrients digestibility, metabolize energy intake (MEI), total digestible nutrient (TDN) and methane emission than PO treatment. However, cows received SBO had greater total volatile fatty acid (TVFA), propionic acid (C3), butyric acid (C4) than cows received on PO (P less than 0.05). In addition, supplementation of YFCP at 10%DM in the diet as an optimum level in dairy cow diets (P greater than 0.05). Finally, the interaction between the addition of SBO and YFCP at 10%DM (SBO+YFCP) had a positive effect on enhancing ether extract intake (EEI) in dairy cows.


2016 ◽  
Vol 56 (7) ◽  
pp. 1035 ◽  
Author(s):  
D. Vyas ◽  
A. Alazzeh ◽  
S. M. McGinn ◽  
T. A. McAllister ◽  
O. M. Harstad ◽  
...  

The objective of this study was to test the efficacy of Propionibacterium strains to mitigate enteric methane (CH4) emissions in beef heifers fed a mixed diet. An experiment was conducted with 16 ruminally cannulated beef heifers fed a basal diet consisting of 60 : 40 barley silage : barley grain (DM basis). Treatments included: (1) Control, (2) Propionibacterium freudenreichii T114, (3) P. thoenii T159, and (4) P. freudenreichii T54. Strains (1 × 1011 colony forming units) were administered daily directly into the rumen before feeding. No treatment effects were observed for DM intake (P = 0.90), mean ruminal pH (P = 0.50) and total volatile fatty acids (P = 0.44). However, compared with the Control, proportions of individual volatile fatty acids changed with acetate being less with Propionibacterium T159 (P = 0.02), whereas ruminal isobutyrate (P < 0.01) and acetate : propionate ratio (P = 0.04) were greater with Propionibacterium T114. Total daily enteric CH4 production averaged 188 g/day and was not affected by Propionbacterium strains (P = 0.51). Methane yield averaged 22 g/kg of DMI intake and tended to be greater with Propionibacterium strains (P = 0.08). The relative abundance of total Propionibacteria was greater with the inoculation of Propionibacterium T159 relative to the Control heifers (P = 0.04). In conclusion, inoculation of Propionibacterium T159 decreased ruminal acetate proportion and Propionibacterium T114 increased acetate : propionate ratio. However, inoculated strains failed to lower total CH4 emissions possibly due to the inability of Propionibacterium strains to elevate ruminal propionate concentrations.


Animals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 2097
Author(s):  
Bénédicte Suybeng ◽  
Edward Charmley ◽  
Christopher P. Gardiner ◽  
Bunmi S. Malau-Aduli ◽  
Aduli E.O. Malau-Aduli

The main objective of this study was to investigate the effect of supplementing beef cattle with incremental levels of Desmanthus leptophyllus cv. JCU1 and Desmanthus bicornutus cv. JCU4 on in vivo methane (CH4) emissions and the role of tannins in rumen fermentation. Fourteen yearling Droughtmaster steers were allocated to each of the two Desmanthus species and offered a basal diet of Rhodes grass (Chloris gayana) hay plus fresh Desmanthus at 0%, 15%, 22%, and 31% of dry matter intake (DMI). The 15% and 31% Desmanthus periods lasted 21 days and the 22 and 0% Desmanthus periods, 14 days. Methane production was measured by open-circuit gas exchange in the last two days of each period. The results showed a linear increase in DMI and reduction in CH4 yield with the increasing level of Desmanthus and subsequently condensed tannins in the diet. The added tannin binder polyethylene glycol-4000 did not affect CH4 yield but increased rumen NH3-N and iso-acid concentrations. Therefore, on a low-quality diet, Desmanthus has the potential to increase intake and reduce CH4 emissions. Even though its tannins can bind rumen proteins, the beef cattle anti-methanogenic response to supplementation with Desmanthus may be a combination of rumen fermentation and tannin effects.


2019 ◽  
Vol 59 (5) ◽  
pp. 906 ◽  
Author(s):  
Bounnaxay Viennasay ◽  
Metha Wanapat ◽  
Khampanat Phesatcha ◽  
Burarat Phesatcha ◽  
Thiwakorn Ampapon

Conserving good source of roughage for dry-season feeding of ruminants is of the utmost importance. Therefore, cassava-top silage (CTS) was prepared and was studied for its feeding level and nutritive value in dairy steers. Four rumen-fistulated dairy steers (75% Holstein Friesian × 25% Thai Native), ~3 years old with 209 ± 50 kg liveweight, were randomly assigned according to a 4 × 4 Latin square design to study the effect of CTS on feed intake, nutrient digestibility and rumen fermentation efficiency. The treatments were four different feeding ratios of CTS to rice straw, as follows: 0:100, 30:70, 60:40 and 100:0 respectively. Increasing the ratio of CTS to rice straw in the feed remarkably reduced the rumen protozoal population (P &lt; 0.01), thus subsequently decreasing rumen methane production (P &lt; 0.01), whereas other rumen microorganisms remained similar among treatments. Correspondingly, rumen propionate production was enhanced (P &lt; 0.01) by increasing the CTS to rice ratio in the feed, and the acetate:propionate ratio decreased (P &lt; 0.01). Furthermore, rumen ammonia nitrogen and blood urea nitrogen increased (P &lt; 0.01) with an increasing proportion of CTS in the feed, whereas nitrogen retention was highest when the proportion of CTS in the feed was 100%. Although the feed DM intakes were similar, apparent digestibilities of DM, organic matter, crude protein as well as neutral detergent fibre and acid detergent fibre were significantly improved by the increase in the percentage of CTS in the feed. It could be concluded that including CTS in the feed at a level of 60–100% improved the rumen fermentation, nitrogen balance and nutrient digestibilities, and is highly recommended for use in the ruminant production in the tropics, as it is a practically simple-to-prepare on-farm feeding intervention.


Sign in / Sign up

Export Citation Format

Share Document