scholarly journals 144 A modeling framework to assess the impact of the texas beef cattle water footprint on livestock sustainability

2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 147-147
Author(s):  
Hector M Menendez ◽  
Benjamin L Turner ◽  
Luis O Tedeschi

Abstract Anticipated growth in the demand for beef products driven by increased protein consumption, brings into question the efficiency, sustainability, profitability, and social dimensions of water use for U.S. beef production. Current assessment of U.S. beef production provides a wide range (695 to 14,191 L H2O/kg) of water footprint (WF) measurements of green (rainfed), blue (ground or surface), and grey (waste treatment) water use, but lacks defined region-specific estimates. The objective of this ongoing study is to develop a dynamic mathematical model for Texas beef cattle WF (TXWFB) that allows users to estimate a Texas WF, evaluate assumptions and parameters of current WF methodologies, identify water-use inefficiencies, and provide policy recommendations for a sustainable WF. The TXWFB was developed using Vensim DSS™ and evaluated with the Model Evaluation System™. The TXWFB model correctly replicated the previously published Chapagain and Hoekstra (2003; CH2003) water footprint results for beef cattle with a 36-month lifespan in both grazing [11,915 m3/t (0.4 t)] and industrial beef cattle [9636 m3/t (0.545 t)] systems. Then, parameters (diet composition and water footprints) from the CH2003 model were used as inputs into the TXWFB model to develop baseline scenarios for Texas, using ten climate regions (36-month lifespan; baseline grazing µ = 26,389 m3/t and industrial µ = 24,615 m3/t). The baseline results were then compared to grazing and industrial scenarios with regionalized Texas parameters for pasture, forage, and crop production (evapotranspiration, drought), diet/phase/region (cow-calf, stocker, and feedlot; 24 months). The TXWFB predictions for regional grazing (µ = 7,591 m3/t) and industrial (µ = 5,948 m3/t) results were 71 to 75% less than the baseline scenarios (P < 0.05). We concluded that the TXWFB estimates were considerably smaller than those previously published, suggesting that current WF methodologies can be refined to more adequately assess beef cattle WF in the US.

2020 ◽  
Vol 158 (5) ◽  
pp. 416-430
Author(s):  
H. M. Menendez ◽  
L. O. Tedeschi

AbstractPerception of freshwater use varies between nations and has led to concerns of how to evaluate water use for sustainable food production. The water footprint of beef cattle (WFB) is an important metric to determine current levels of freshwater use and to set sustainability goals. However, current WFB publications provide broad WF values with inconsistent units preventing direct comparison of WFB models. The water footprint assessment (WFA) methodologies use static physio-enviro-managerial equations, rather than dynamic, which limits their ability to estimate cattle water use. This study aimed to advance current WFA methods for WFB estimation by formulating the WFA into a system dynamics methodology to adequately characterize the major phases of the beef cattle industry and provide a tool to identify high-leverage solutions for complex water use systems. Texas is one of the largest cattle producing areas in the United States, a significant water user. This geolocation is an ideal template for WFB estimation in other regions due to its diverse geography, management-cultures, climate and natural resources. The Texas Beef Water Footprint model comprised seven submodels (cattle population, growth, nutrition, forage, WFB, supply chain and regional water use; 1432 state variables). Calibration of our model replicated initial WFB values from an independent study by Chapagain and Hoekstra in 2003 (CH2003). This CH2003 v. Texas production scenarios evaluated model parameters and assumptions and estimated a 41–66% WFB variability. The current model provides an insightful tool to improve complex, unsustainable and inefficient water use systems.


2020 ◽  
Author(s):  
Hector M. Menendez ◽  
Alberto S. Atzori ◽  
Luis O. Tedeschi

AbstractThe water footprint assessment method has helped to bring livestock water use to the forefront of research to address water challenges under the ecological footprint perspective. The current assessment methods of water use make a meaningful assessment of livestock water use difficult as they are mainly static, thus poorly adaptable to understand future scenarios of water use and requirements. They lack the integration of fundamental ruminant nutrition and growth equations within a dynamic context that accounts for short and long-term behavior and time delays associated with economically important beef producing areas. This study utilized the System Dynamics methodology to conceptualize a water footprint for ruminants within a dynamic and mechanistic modeling framework. The problem of beef cattle livestock water footprint assessment was articulated, and a dynamic hypothesis was formed to represent the Texas livestock water use system as the initial step in developing the Texas Beef Water Footprint model (TXWFB). The fulfillment of the dynamic hypothesis required the development of three causal loop diagrams (CLD): cattle population, growth and nutrition, and the livestock water footprint. The CLD provided a framework that captured the daily water footprint of beef (WFB) of the cow-calf, stocker, and feedlot phases and the entire beef supply chain. Preliminary simulations captured the oscillatory behavior of the Texas cattle population and overshoot and collapse behavior, under conditions when regional livestock water resources became scarce. Sensitivity analysis from the hypothesized CLD structures indicated that forage quality was less of an impact on the daily WFB of each cattle phase compared to the use of high concentrate feeds. This study provided a framework concept for the development of a dynamic water footprint model for Texan’s beef cattle production and water sustainability.


2018 ◽  
Author(s):  
Xiao-Bo Luan ◽  
Ya-Li Yin ◽  
Pu-Te Wu ◽  
Shi-Kun Sun ◽  
Yu-Bao Wang ◽  
...  

Abstract. Fresh water is consumed during agricultural production. With the shortage of water resources, assessing the water use efficiency is crucial to effectively managing agricultural water resources. The water footprint is a new index for water use evaluation, and it can reflect the quantity and types of water usage during crop growth. This study aims to establish a method for calculating the region-scale water footprint of crop production based on hydrological processes. This method analyzes the water-use process during the growth of crops, which includes irrigation, precipitation, underground water, evapotranspiration, and drainage, and it ensures a more credible evaluation of water use. As illustrated by the case of the Hetao irrigation district (HID), China, the water footprints of wheat, corn and sunflower were calculated using this method. The results show that canal water loss and evapotranspiration were responsible for most of the water consumption and accounted for 47.9 % and 41.8 % of the total consumption, respectively. The total water footprints of wheat, sunflower and corn were 1380–2888 m3/t, 942–1774 m3/t, and 2095–4855 m3/t, respectively, and the blue footprint accounts for more than 86 %. The spatial distribution pattern of the green, blue and total water footprint for the three crops demonstrated that higher values occurred in the eastern part of the HID, which had more precipitation and was further from the irrigating gate. This study offers a vital reference for improving the method used to calculate the crop water footprint.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Julien Hurbain ◽  
Darka Labavić ◽  
Quentin Thommen ◽  
Benjamin Pfeuty

Abstract Fractional killing illustrates the cell propensity to display a heterogeneous fate response over a wide range of stimuli. The interplay between the nonlinear and stochastic dynamics of biochemical networks plays a fundamental role in shaping this probabilistic response and in reconciling requirements for heterogeneity and controllability of cell-fate decisions. The stress-induced fate choice between life and death depends on an early adaptation response which may contribute to fractional killing by amplifying small differences between cells. To test this hypothesis, we consider a stochastic modeling framework suited for comprehensive sensitivity analysis of dose response curve through the computation of a fractionality index. Combining bifurcation analysis and Langevin simulation, we show that adaptation dynamics enhances noise-induced cell-fate heterogeneity by shifting from a saddle-node to a saddle-collision transition scenario. The generality of this result is further assessed by a computational analysis of a detailed regulatory network model of apoptosis initiation and by a theoretical analysis of stochastic bifurcation mechanisms. Overall, the present study identifies a cooperative interplay between stochastic, adaptation and decision intracellular processes that could promote cell-fate heterogeneity in many contexts.


Animals ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 286 ◽  
Author(s):  
Donald M. Broom

This analysis, using published data, compared all land and conserved water use in four beef production systems. A widespread feedlot system and fertilised irrigated pasture systems used similar amounts of land. However, extensive unmodified pasture systems used three times more land, and semi-intensive silvopastoral systems used four times less land, so the highest use was 13 times the lowest. The amount of conserved water used was 64% higher in feedlots with relatively intensive rearing systems than in fertilised irrigated pasture; in extensive unmodified pasture systems, it was 38% and in semi-intensive silvopastoral systems, it was 21% of the fertilised irrigated pasture value, so the highest use was eight times the lowest. If there was no irrigation of pasture or of plants used for cattle feed, the feedlot water use was 12% higher than the fertilised pasture use and 57% higher than that in semi-intensive silvopastoral systems. These large effects of systems on resource use indicate the need to consider all systems when referring to the impact of beef or other products on the global environment. Whilst the use of animals as human food should be reduced, herbivorous animals that consume food that humans cannot eat and are kept using sustainable systems are important for the future use of world resources.


2017 ◽  
Vol 60 (6) ◽  
pp. 2111-2122 ◽  
Author(s):  
Rulianda P. Wibowo ◽  
Nathan P. Hendricks ◽  
Isaya Kisekka ◽  
Alemie Araya

Abstract. We studied optimal irrigation management by risk-averse farmers with different soil types under limited well capacity. Our modeling framework allowed us to assess the optimal adjustment along the intensive margins (i.e., changes in seasonal irrigation depth) and along the extensive margins (i.e., changes in irrigated area). Our empirical application uses AquaCrop to simulate corn yields with historical weather in southwest Kansas under a large number of potential irrigation strategies. We show that risk aversion significantly increases total water use, especially for low and medium well capacities. While farmers decreased irrigated area due to risk aversion, the increase in water use occurred because it was optimal to increase the seasonal irrigation depth to reduce production risk. The increase in seasonal irrigation depth arises mostly from reduced management allowable depletion (MAD) levels in the initial crop growth stages of corn. Counterintuitively, risk aversion had a smaller impact on water use for a soil with a smaller soil water holding capacity. This result arises because optimal irrigation under risk neutrality is larger for soils with a smaller water holding capacity. Our results highlight the importance of accounting for risk aversion when estimating the optimal irrigation management strategy and show that the impact of risk aversion differs significantly by well capacity and soil type. Keywords: AquaCrop, Irrigation, Risk, Well capacity.


2014 ◽  
Vol 153 (5) ◽  
pp. 767-778 ◽  
Author(s):  
S. K. SUN ◽  
P. T. WU ◽  
Y. B. WANG ◽  
X. N. ZHAO

SUMMARYWater scarcity is a major constraint of agricultural production in arid and semi-arid areas. In the face of future water scarcity, one possible way the agricultural sector could be adapted is to change cropping patterns and make adjustments for available water resources for irrigation. The present paper analyses the temporal evolution of cropping pattern from 1960 to 2008 in the Hetao Irrigation District (HID), China. The impact of changing cropping patterns on regional agricultural water productivity is evaluated from the water footprint (WF) perspective. Results show that the area under cash crops (e.g. sunflower and melon) has risen phenomenally over the study period because of increased economic returns pursued by farmers. Most of these cash crops have a smaller WF (high water productivity) than grain crops in HID. With the increase of area sown to cash crops, water productivity in HID increased substantially. Changing the cropping pattern has significant effects on regional crop water productivity: in this way, HID has increased the total crop production without increasing significantly the regional water consumption. The results of this case study indicate that regional agricultural water can be used effectively by properly planning crop areas and patterns under irrigation water limitations. However, there is a need to foster a cropping pattern that is multifunctional and sustainable, which can guarantee food security, enhance natural resource use and provide stable and high returns to farmers.


2021 ◽  
Vol 9 ◽  
Author(s):  
Kai Huang ◽  
Mengqi Wang ◽  
Zhongren Zhou ◽  
Yajuan Yu ◽  
Yixing Bi

Beijing, the capital of China, is experiencing a serious lack of water, which is becoming a main factor in the restriction of the development of the social economy. Due to the low economic efficiency and high consumption proportion of agricultural water use, the relationship between economic growth and agricultural water use is worth investigating. The “decoupling” index is becoming increasingly popular for identifying the degree of non-synchronous variation between resource consumption and economic growth. However, few studies address the decoupling between the crop water consumption and agricultural economic growth. This paper involves the water footprint (WF) to assess the water consumption in the crop production process. After an evaluation of the crop WF in Beijing, this paper applies the decoupling indicators to examine the occurrence of non-synchronous variation between the agricultural gross domestic product (GDP) and crop WF in Beijing from 1981 to 2013. The results show that the WF of crop production in 2013 reduced by 62.1% compared to that in 1980 — in total, 1.81 × 109 m3. According to the decoupling states, the entire study period is divided into three periods. From 1981 to 2013, the decoupling states represented seventy-five percent of the years from 1981 to 1992 (Period I) with a moderate decoupling degree, more than ninety percent from 1993 to 2003 (Period II) with a very strong decoupling degree and moved from non-decoupling to strong decoupling from 2004 to 2013 (Period III). Adjusting plantation structure, technology innovation and raising awareness of water-saving, may promote the decoupling degree between WF and agricultural GDP in Beijing.


Water ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2230
Author(s):  
Mariam Al-Bahouh ◽  
Vern Osborne ◽  
Tom Wright ◽  
Mike Dixon ◽  
Andrew VanderZaag ◽  
...  

The blue water footprint (WF) is an indicator of freshwater required to produce a given end product. Determining the blue WF for milk production, the seasonal water use and the impact of water conservation are important sustainability considerations for the dairy industry in Ontario (Canada). In this study, a water footprint network (WFN) method was used to calculate the seasonal blue WF’s from in-barn water use data and the fat–protein-corrected milk (FPCM) production. Various water conservation options were estimated using the AgriSuite software. Results showed that the total water use (L of water·cow−1·d−1) and the average blue WF (L of water·kg−1 of FPCM) were 246.3 ± 6.8 L·cow−1·d−1 and 7.4 ± 0.2 L·kg−1, respectively. The total water use and the blue WF could be reduced to 182.7 ± 5.1 L·cow−1·d−1 (25.8% reduction) and 5.8 ± 0.1 L·kg−1 (21.6% reduction), respectively, through adaptive water conservation measures as the reuse of the plate cooler and milk house water. For example, conservation practices could reduce the milk house wash water use from 74.3 ± 8.8 L·cow−1·d−1 to 16.6 ± 0.1 L·cow−1·d−1 (77.7% overall reduction).


2019 ◽  
Vol 11 (20) ◽  
pp. 5567 ◽  
Author(s):  
Ge Song ◽  
Chao Dai ◽  
Qian Tan ◽  
Shan Zhang

The grey water footprint theory was introduced into a fractional programming model to alleviate non-point source pollution and increase water-use efficiency through the adjustment of crop planting structure. The interval programming method was also incorporated within the developed framework to handle parametric uncertainties. The objective function of the model was the ratio of economic benefits to grey water footprints from crop production, and the constraints contained water availability constraints, food security constraints, planting area constraints, grey water footprint constraints and non-negative constraints. The model was applied to the Hetao Irrigation District of China. It was found that, based on the data in the year of 2016, the optimal planting plans generated from the developed model would reduce 34,400 m3 of grey water footprints for every 100 million Yuan gained from crops. Under the optimal planting structure, the total grey water footprints would be reduced by 21.9 million m3, the total economic benefits from crops would be increased by 1.138 billion Yuan, and the irrigation water would be saved by 44 million m3. The optimal results could provide decision-makers with agricultural water use plans with reduced negative impacts on the environment and enhanced economic benefits from crops.


Sign in / Sign up

Export Citation Format

Share Document