Thermal stress responses of two sympatric crayfishes in Louisiana, Procambarus clarkii Girard, 1852 and Procambarus zonangulus Hobbs & Hobbs, 1990 (Decapoda: Astacoidea: Cambaridae)

2020 ◽  
Vol 40 (6) ◽  
pp. 734-738
Author(s):  
Jordan R Logarbo ◽  
Christopher P Bonvillain

Abstract Water temperature is an important abiotic component in farmed and wild crayfish habitats as it influences individual and population characteristics including growth, metabolic activity, and overall population vigor. Thermal limits, however, have not been established for the two commercially important crayfishes in Louisiana, the red swamp crayfish Procambarus clarkii (Girard, 1852) and the southern white river crayfish P. zonangulus (Hobbs & Hobbs, 1990). We aimed to determine the thermal stress responses for the two species. Thermal stress was examined by the critical thermal maxima (CTmax) for crayfish acclimated to 24, 27, or 30 °C for two weeks prior to experimentation. Water temperature in all acclimation trials was increased 1 °C h–1 and the end-point temperature for an individual was determined by the failure of righting response within 30 seconds. CTmax values (±SD) for P. clarkii acclimated at 24, 27, and 30 °C were 39.5 ± 0.5, 39.1 ± 0.3, and 39.4 ± 0.7 °C respectively, and 39.8 ± 0.8, 38.8 ± 0.8, and 39.0 ± 0.6 °C for P. zonangulus. CTmax did not differ significantly between species in any of the acclimation treatments. Thermal stress was also examined by measuring P. clarkii and P. zonangulus hemolymph glucose concentration every two hours for crayfish acclimated at 26 °C for two weeks and water temperature increased 1 °C h–1. Hemolymph glucose concentration began to increase at 36 °C in P. zonangulus and 38 °C in P. clarkii. Large increases in mean hemolymph glucose concentration (±SE) were observed in both P. clarkii (67.19 mg–dl ± 24.55) and P. zonangulus (74.11 mg–dl ± 18.04) at 40 °C.

2003 ◽  
Vol 86 (1-2) ◽  
pp. 139-156 ◽  
Author(s):  
Robin J. Rowbury

Biological thermometers are cellular components or structures which sense increasing temperatures, interaction of the thermometer and the thermal stress bringing about the switching-on of inducible responses, with gradually enhanced levels of response induction following gradually increasing temperatures. In enterobacteria, for studies of such thermometers, generally induction of heat shock protein (HSP) synthesis has been examined, with experimental studies aiming to establish (often indirectly) how the temperature changes which initiate HSP synthesis are sensed; numerous other processes and responses show graded induction as temperature is increased, and how the temperature changes which induce these are sensed is also of interest. Several classes of intracellular component and structure have been proposed as enterobacterial thermometers, with the ribosome and the DnaK chaperone being the most favoured, although for many of the proposed intracellular thermometers, most of the evidence for their functioning in this way is indirect. In contrast to the above, the studies reviewed here firmly establish that for four distinct stress responses, which are switched-on gradually as temperature increases, temperature changes are sensed by extracellular components (extracellular sensing components, ESCs) i.e. there is firm and direct evidence for the occurrence of extracellular thermometers. All four thermometers described here are proteins, which appear to be distinct and different from each other, and on sensing thermal stress are activated by it to four distinct extracellular induction components (EICs), which interact with receptors on the surface of organisms to induce the appropriate responses. It is predicted that many other temperature-induced processes, including the synthesis of HSPs, will be switched-on following the activation of similar extracellular thermometers by thermal stimuli.


Sensors ◽  
2019 ◽  
Vol 19 (7) ◽  
pp. 1518 ◽  
Author(s):  
Haiyun Wu ◽  
Yuzu Fujii ◽  
Toshiki Nakano ◽  
Takafumi Arimoto ◽  
Masataka Murata ◽  
...  

Wireless biosensor systems were developed in our lab for monitoring blood glucose concentrations in fish as an indicator of fish stress. However, uniform immobilization of the enzyme on the surface of the electrode is difficult, so the sensor response is typically reduced at a range of high glucose concentrations during the stress monitoring. In this study, we attempted to enhance sensor response by using a self-assembled monolayer-immobilized enzyme. Glucose oxidase was immobilized on a working electrode modified with a self-assembled monolayer. The proposed biosensor showed a good correlation between the output current and the glucose concentration range of 10–3500 mg dL−1 under an optimized working condition. The dynamic measurement range of this newly developed sensor is significantly improved, especially over a high concentration range, which helps the sensor to achieve better performance in dramatic changes in the stress response of fish. In addition, we used biological samples from test fish and obtained a good correlation coefficient between the sensor output current and the glucose concentration using a conventional method. The proposed wireless biosensor system was also applied to monitor fish stress responses in real time through different stressors and to obtain some precise data that reflect real fish stress responses.


Water ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 139
Author(s):  
Chang Hyuk Ahn ◽  
Saeromi Lee ◽  
Ho Myeon Song ◽  
Jae Roh Park ◽  
Jin Chul Joo

: This study evaluated water quality variations in an artificial deep pool (ADP), which is an underground artificial structure built in a shallow pond as a fish shelter. The water temperature, pH, dissolved oxygen (DO), and electrical conductivity (EC) were measured on an hourly basis in the open space and inside the ADP, and a phenomenological study was performed, dividing seasons into normal and rainy seasons and environments into stagnant and circulating conditions. The results showed that the water quality parameters inside the ADP exhibit lower fluctuations and diurnal variations compared with the open space. On average, the water temperature inside the ADP is lower than outside it by 1.7–3.7 °C in stagnant conditions, and by 0.6–0.7 °C in circulating conditions during early summer. Thermal stratification occurs inside the ADP but is temporarily disturbed due to the mixing from the forced circulation and the rainwater input through rainfall events. The ADP provided a constant and optimal water temperature for living and spawning for bitterling (i.e., 15.0–21.0 °C), which dominated in experimental pond during spring to summer. Most importantly, the ADP was able to significantly reduce the thermal stress of the fish in the study site, and as a result, the bitterling, a cool water fish species, could successfully become dominant. Finally, the deployment of the ADP appears to provide a practical alternative for effective fishery resources management to improve species diversity and fish communities in an artificial freshwater ecosystem (garden pond, park pond, other artificial wetlands, etc.).


2020 ◽  
Vol 46 (3) ◽  
pp. 1075-1091
Author(s):  
Efthimia Antonopoulou ◽  
Ioanna Chatzigiannidou ◽  
Konstantinos Feidantsis ◽  
Christiana Kounna ◽  
Stavros Chatzifotis

2008 ◽  
Vol 38 (4) ◽  
pp. 603-609 ◽  
Author(s):  
Luis Antonio Kioshi Aoki Inoue ◽  
Gilberto Moraes ◽  
George K. Iwama ◽  
Luis Orlando Bertola Afonso

The present work evaluated several aspects of the generalized stress response [endocrine (cortisol), metabolic (glucose), hematologic (hematocrit and hemoglobin) and cellular (HSP70)] in the Amazonian warm-water fish matrinxã (Brycon amazonicus ) subjected to an acute cold shock. This species farming has been done in South America, and growth and feed conversion rates have been interesting. However, in subtropical areas of Brazil, where the water temperature can rapidly change, high rates of matrinxã mortality have been associated with abrupt decrease in the water temperature. Thus, we subjected matrinxã to a sudden cold shock by transferring the fish directly to tanks in which the water temperature was 10ºC below the initial conditions (cold shock from 28ºC to 18ºC). After 1h the fish were returned to the original tanks (28ºC). The handling associated with tank transfer was also imposed on control groups (not exposed to cold shock). While exposure to cold shock did not alter the measured physiological conditions within 1h, fish returned to the ambient condition (water at 28º C) significantly increased plasma cortisol and glucose levels. Exposure to cold shock and return to the warm water did not affect HSP70 levels. The increased plasma cortisol and glucose levels after returning the fish to warm water suggest that matrinxã requires cortisol and glucose for adaptation to increased temperature.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Satish C. Boregowda ◽  
Robert E. Choate ◽  
Rodney Handy

The present study involves application of an open system entropy generation formulation to analyze human thermal stress responses. The time-series human thermal stress response data are obtained by conducting a simulation using a validated finite-element human thermal model (FEHTM). These simulated human thermal response data are used as an input to the entropy generation expression to obtain human entropy generation (HEG) values. The effects of variables such as air temperature, relative humidity, physical activity, and clothing on entropy generation are examined. A design of experiment (DOE) approach is utilized to study the interaction effects of air temperature and relative humidity on entropy generation. The study establishes the importance and utility of entropy generation as a holistic measure of human thermal physiological reaction to external and internal changes. This novel study has great potential for use in military medicine, rehabilitation, sports, and related applications.


2017 ◽  
Author(s):  
Joshua Louis Bonesso ◽  
William Leggat ◽  
Tracy Danielle Ainsworth

Elevated sea surface temperatures (SSTs) are linked to an increase in the frequency and severity of bleaching events due to temperatures exceeding corals’ upper thermal limits. The temperatures at which a breakdown of the coral-Symbiodinium endosymbiosis (coral bleaching) occurs are referred to as the upper thermal limits for the coral species. This breakdown of the endosymbiosis results in a reduction of corals’ nutritional uptake, growth, and tissue integrity. Periods of elevated sea surface temperature, thermal stress and coral bleaching are also linked to increased disease susceptibility and an increased frequency of storms which cause injury and physical damage to corals. Herein we aimed to determine the capacity of corals to regenerate and recover from injuries (removal of apical tips) sustained during periods of elevated sea surface temperatures which result in coral stress responses, but which do not result in coral bleaching (i.e. sub-bleaching thermal stress events). In this study, exposure of the species Acropora aspera to an elevated SST of 32°C (2°C below the bleaching threshold, 34°C) was found to result in reduced fluorescence of green fluorescent protein (GFP), reduced skeletal calcification and a lack of branch regrowth at the site of injury, compared to corals maintained under ambient SST conditions (26°C). Corals maintained under normal, ambient, sea surface temperatures expressed high GFP fluorescence at the injury site, underwent a rapid regeneration of the coral branch apical tip within 12 days of sustaining injury, and showed extensive regrowth of the coral skeleton. Taken together, our results have demonstrated that periods of sustained increased sea surface temperatures, below the corals’ bleaching threshold but above long-term summertime averages, impair coral recovery from damage, regardless of the onset or occurrence of coral bleaching .


2021 ◽  
Author(s):  
◽  
Anne Wietheger

<p>Coral bleaching, the loss of symbiotic dinoflagellate algae (genus Symbiodinium) and/or photosynthetic algal pigments from their coral host has become a regular occurrence in the last few decades due to increasing seawater temperatures. A key consideration in bleaching susceptibility is the symbiotic alga‘s physiology and its capacity to deal with abiotic stress; oxidative stress is of particular interest given that this can arise from thermally induced photosynthetic dysfunction. The aim of this study was to compare the effects of thermal and oxidative stress on the photosynthetic performance of a range of Symbiodinium clades and types (i.e. sub-clades) in different states of symbiosis (in hospite, freshly isolated and in culture). Whether the responses to these two stressors are related was investigated; in particular, it was hypothesised that more thermally sensitive types would be more sensitive to oxidative stress. Furthermore, the study aimed to elucidate the role of antioxidants in the observed stress responses. The specific objectives were 1) to establish whether different types of cultured Symbiodinium have dissimilar sensitivities to oxidative stress, induced by hydrogen peroxide (H₂O₂), and whether these are related to their thermal sensitivities; 2) measure the activity and relative amounts of specific reactive oxygen species (ROS) in different types of cultured Symbiodinium in response to thermal and oxidative stress induced by H₂O₂; 3) measure total antioxidant activity in different cultured Symbiodinium types when under oxidative stress; and 4) compare and contrast the responses of different Symbiodinium types to thermal and oxidative stress when in hospite (i.e. in corals) and freshly isolated. In this study, I showed that different Symbiodinium clades and types can differ widely in their responses to both thermal and oxidative stress. This was indicated by photosynthetic performance measured by chlorophyll fluorescence, and differences in the quantity of specific ROS measured via fluorescent probes and flow cytometry. For instance, when adding H₂O₂ to Symbiodinium F1, originally from Hawaii, a decrease of > 99% in maximum quantum yield (Fv/Fm) was displayed, while there was no change in Fv/Fm in the temperate Symbiodinium A1, freshly isolated from the anemone Anthopleura aureoradiata from New Zealand. When comparing the difference in ROS production between the control (26 °C) and a thermal stress treatment (35 °C), type E1 from Okinawa showed no difference in any of the measured ROS. In contrast, a different A1 type from the Gulf of Aqaba displayed an increase in the overall production of ROS, and more specifically in the production of superoxide. Symbiodinium types also displayed differential oxidative stress resistance, which was apparent from their antioxidant activities; in particular, total antioxidant capacity was measured by the ferric reducing antioxidant potential (FRAP) and cellular antioxidant activity (CAA) assays. For example, the aforementioned Symbiodinium types, A1 from the Gulf of Aqaba and F1, increased their antioxidant activities with increasing H₂O₂ concentrations. Meanwhile, type E1 displayed higher baseline levels of antioxidants in comparison to the other two types (A1, F1), which then decreased with increasing H₂O₂. Specific activities of superoxide dismutase and ascorbate peroxidase were also measured. Stress susceptibility appears to be related both to Symbiodinium type and geographic origin, but greater sensitivity to thermal stress did not necessarily correlate with greater susceptibility to oxidative stress. The exact relationship between thermal and oxidative sensitivities in Symbiodinium spp. remains elusive, but it is suggested that different types might follow different strategies for dealing with stress. I propose that some Symbiodinium types rely more on photo-protection when exposed to thermal stress (and hence cope less with oxidative stress), while other types depend more on antioxidants and oxidative stress resistance. The latter might be the better strategy for types from more variable environments, such as higher latitude reefs or intertidal regions, where potentially stressful conditions may be encountered more frequently. This study gives new insights into the variability of stress responses in the genus Symbiodinium, and the complex relationship between thermal and oxidative stress. The implications of these findings for coral bleaching susceptibility and the biogeographic distribution of different Symbiodinium types are discussed.</p>


Sign in / Sign up

Export Citation Format

Share Document