Prevalence of Coxiella burnetii (Legionellales: Coxiellaceae) Infection Among Wildlife Species and the Tick Hyalomma lusitanicum (Acari: Ixodidae) in a Meso-Mediterranean Ecosystem

Author(s):  
Julia González ◽  
Marta G González ◽  
Félix Valcárcel ◽  
Maria Sánchez ◽  
Raquel Martín-Hernández ◽  
...  

Abstract Q fever is a worldwide zoonosis caused by Coxiella burnetii (Derrick) Philip. It is a major cause of abortion among sheep and may be responsible for reproductive losses in red deer in Spain. Airborne transmission is the most widespread; however, some studies suggested that ticks may play a role, but little is known about their actual involvement in the C. burnetii cycle. The aim of this study was to determine the role that Hyalomma lusitanicum (Koch) tick plays in the maintenance of this agent among wildlife in the meso-Mediterranean areas. We processed by PCR 53 swabs from wild rabbits, 21 liver samples from red deer, and 236 ticks collected at different stages. Coxiella burnetii DNA was detected in 43.40% of wild rabbits and 38.09% of red deer, supporting the hypothesis that these animals are quite likely to serve as a reservoir in the field. We also found a high prevalence of C. burnetii in ticks (55.66%). It is worth noting that 50.45% of positive ticks were collected from negative hosts, suggesting that the pathogen probably was acquired at a previous tick stage. Our results suggest transstadial transmission, and the presence of bacterial DNA in the offspring of positive female ticks is the first evidence of the transovarial transmission of C. burnetii by H. lusitanicum. Thus, this tick species seems to play an important role as a bridge of infection in the wildlife cycle, although further studies are needed to confirm vector competence.

Pathogens ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 36
Author(s):  
María Sánchez ◽  
Félix Valcárcel ◽  
Julia González ◽  
Marta G. González ◽  
Raquel Martín-Hernández ◽  
...  

(1) Background: Q fever is a worldwide zoonosis caused by Coxiella burnetii that have cases reported in humans and animals almost everywhere. The aim of this study was to describe the seasonality of Coxiella burnetii in the wild rabbit (Oryctolagus cuniculus) and the tick Hyalomma lusitanicum in a meso-Mediterranean ecosystem. (2) Methods: two populations of wild rabbits that differ in whether or not they share habitat with ungulates, mainly red deer (Cervus elaphus) were sampled for a year to collect ticks, blood and vaginal or anal swabs. Presence of C. burnetii DNA in swabs and the tick H. lusitanicum was determined by PCR and serum antibodies by ELISA. (3) Results: C. burnetii DNA was detected in 47.2% of 583 rabbits, in 65.5% of sera, and in more than half of the H. lusitanicum. There were small variations according to sex and age of the rabbits but significant according to the habitat (4) Conclusions: The results indicate that C. burnetii circulates freely between wild rabbits and H. lusitanicum and the sylvatic cycle in meso-Mediterranean environments relies in the presence of wild rabbits and H. lusitanicum above all if sharing habitat with red deer.


Author(s):  
Julia González ◽  
Marta G. González ◽  
Félix Valcárcel ◽  
María Sánchez ◽  
Raquel Martín-Hernández ◽  
...  

Coxiella burnetii (Derrick) Philip, the causative agent of Q fever, is mainly transmitted by aerosols, but ticks can also be a source of infection. Transstadial and transovarical transmission of C. burnetii by Hyalomma lusitanicum (Koch) has been suggested. There is a close relationship between this tick species, wild animals and C. burnetii but the transmission in a natural environment has not been demonstrated. In this study, we collected 80 engorged nymphs of H. lusitanicum from red deer and wild rabbits. They molt to adults under laboratory conditions and we feed them artificially through silicone membranes after a preconditioning period. C. burnetii DNA was tested in ticks, blood and feces samples using real-time PCR. The pathogen was found in 36.25% of fed adults demonstrating that transstadial transmission from nymph to adult occurs in nature. The presence of DNA in the 60% of blood samples confirms that adults transmit the bacteria during feeding. Further studied are needed about co-feeding and other possible transmission routes to define the role of this tick species in the cycle of C. burnetii.


Pathogens ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 884 ◽  
Author(s):  
Julia González ◽  
Marta G. González ◽  
Félix Valcárcel ◽  
María Sánchez ◽  
Raquel Martín-Hernández ◽  
...  

Coxiella burnetii (Derrick) Philip, the causative agent of Q fever, is mainly transmitted by aerosols, but ticks can also be a source of infection. Transstadial and transovarial transmission of C. burnetii by Hyalomma lusitanicum (Koch) has been suggested. There is a close relationship between this tick species, wild animals and C. burnetii but the transmission in a natural environment has not been demonstrated. In this study, we collected 80 engorged nymphs of H. lusitanicum from red deer and wild rabbits. They moult to adults under laboratory conditions and we feed them artificially through silicone membranes after a preconditioning period. C. burnetii DNA was tested in ticks, blood and faeces samples using real-time PCR. The pathogen was found in 36.2% of fed adults, demonstrating that transstadial transmission from nymph to adult occurs in nature. The presence of DNA in the 60.0% of blood samples after artificial feeding confirms that adults transmit the bacteria during feeding. Further studies are needed about co-feeding and other possible transmission routes to define the role of this tick species in the cycle of C. burnetii.


2021 ◽  
Vol 8 ◽  
Author(s):  
Sophia Körner ◽  
Gustavo R. Makert ◽  
Sebastian Ulbert ◽  
Martin Pfeffer ◽  
Katja Mertens-Scholz

The zoonosis Q fever is caused by the obligate intracellular bacterium Coxiella burnetii. Besides the main transmission route via inhalation of contaminated aerosols, ticks are discussed as vectors since the first isolation of the pathogen from a Dermacentor andersonii tick. The rare detection of C. burnetii in ticks and the difficult differentiation of C. burnetii from Coxiella-like endosymbionts (CLEs) are questioning the relevance of ticks in the epidemiology of Q fever. In this review, literature databases were systematically searched for recent prevalence studies concerning C. burnetii in ticks in Europe and experimental studies evaluating the vector competence of tick species. A total of 72 prevalence studies were included and evaluated regarding DNA detection methods and collection methods, country, and tested tick species. Specimens of more than 25 different tick species were collected in 23 European countries. Overall, an average prevalence of 4.8% was determined. However, in half of the studies, no Coxiella-DNA was detected. In Southern European countries, a significantly higher prevalence was observed, possibly related to the abundance of different tick species here, namely Hyalomma spp. and Rhipicephalus spp. In comparison, a similar proportion of studies used ticks sampled by flagging and dragging or tick collection from animals, under 30% of the total tick samples derived from the latter. There was no significant difference in the various target genes used for the molecular test. In most of the studies, no distinction was made between C. burnetii and CLEs. The application of specific detection methods and the confirmation of positive results are crucial to determine the role of ticks in Q fever transmission. Only two studies were available, which assessed the vector competence of ticks for C. burnetii in the last 20 years, demonstrating the need for further research.


2014 ◽  
Vol 21 (4) ◽  
pp. 484-487 ◽  
Author(s):  
M. N. T. Kremers ◽  
R. Janssen ◽  
C. C. H. Wielders ◽  
L. M. Kampschreur ◽  
P. M. Schneeberger ◽  
...  

ABSTRACTFrom 2007 to 2010, the Netherlands experienced the largest reported Q fever outbreak, with >4,000 notified cases. We showed previously that C-reactive protein is the only traditional infection marker reflecting disease activity in acute Q fever. Interleukin-6 is the principal inducer of C-reactive protein. We questioned whether increased C-reactive protein levels in acute Q fever patients coincide with increased interleukin-6 levels and if these levels correlate with theCoxiella burnetiiDNA load in serum. In addition, we studied their correlation with disease severity, expressed by hospital admission and the development of fatigue. Interleukin-6 and C-reactive protein levels were analyzed in sera from 102 patients diagnosed with seronegative PCR-positive acute Q fever. Significant but weak negative correlations were observed between bacterial DNA loads expressed as cycle threshold values and interleukin-6 and C-reactive protein levels, while a significant moderate-strong positive correlation was present between interleukin-6 and C-reactive protein levels. Furthermore, significantly higher interleukin-6 and C-reactive protein levels were observed in hospitalized acute Q fever patients in comparison to those in nonhospitalized patients, while bacterial DNA loads were the same in the two groups. No marker was prognostic for the development of fatigue. In conclusion, the correlation between interleukin-6 and C-reactive protein levels in acute Q fever patients points to an immune activation pathway in which interleukin-6 induces the production of C-reactive protein. Significant differences in interleukin-6 and C-reactive protein levels between hospitalized and nonhospitalized patients despite identical bacterial DNA loads suggest an important role for host factors in disease presentation. Higher interleukin-6 and C-reactive protein levels seem predictive of more severe disease.


Pathogens ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 741
Author(s):  
Dimitrios Frangoulidis ◽  
Claudia Kahlhofer ◽  
Ahmed Shire Said ◽  
Abdinasir Yusuf Osman ◽  
Lidia Chitimia-Dobler ◽  
...  

Coxiella burnetii is the causative agent of Q fever. It can infect animals, humans, and birds, as well as ticks, and it has a worldwide geographical distribution. To better understand the epidemiology of C. burnetii in Somalia, ticks infesting camels were collected from five different regions, including Bari, Nugaal, Mudug, Sool, and Sanaag, between January and March 2018. Collected ticks were tested for C. burnetii and Coxiella-like endosymbiont DNA by using IS1111, icd, and Com1-target PCR assays. Moreover, sequencing of the 16S-rRNA was conducted. Molecular characterization and typing were done by adaA-gene analysis and plasmid-type identification. Further typing was carried out by 14-marker Multi-Locus Variable-Number Tandem Repeats (MLVA/VNTR) analysis. The investigated ticks (n = 237) were identified as Hyalomma spp. (n = 227, 95.8%), Amblyomma spp. (n = 8, 3.4%), and Ripicephalus spp. (n = 2, 0.8%), and 59.1% (140/237) of them were positive for Coxiella spp. While Sanger sequencing and plasmid-type identification revealed a C. burnetii that harbours the QpRS-plasmid, MLVA/VNTR genotyping showed a new genotype which was initially named D21. In conclusion, this is the first report of C. burnetii in ticks in Somalia. The findings denote the possibility that C. burnetii is endemic in Somalia. Further epidemiological studies investigating samples from humans, animals, and ticks within the context of “One Health” are warranted.


2021 ◽  
Vol 15 (1) ◽  
pp. e0009008
Author(s):  
Marie Buysse ◽  
Maxime Duhayon ◽  
Franck Cantet ◽  
Matteo Bonazzi ◽  
Olivier Duron

Q fever is a widespread zoonotic disease caused by the intracellular bacterium Coxiella burnetii. While transmission is primarily but not exclusively airborne, ticks are usually thought to act as vectors on the basis of early microscopy studies. However, recent observations revealed that endosymbionts of ticks have been commonly misidentified as C. burnetii, calling the importance of tick-borne transmission into question. In this study, we re-evaluated the vector competence of the African soft tick Ornithodoros moubata for an avirulent strain of C. burnetii. To this end, we used an artificial feeding system to initiate infection of ticks, specific molecular tools to monitor further infections, and culture assays in axenic and cell media to check for the viability of C. burnetii excreted by ticks. We observed typical traits associated with vector competence: The exposure to an infected blood meal resulted in viable and persistent infections in ticks, trans-stadial transmissions of infection from nymphs to adults and the ability of adult ticks to transmit infectious C. burnetii. However, in contrast to early studies, we found that infection differed substantially between tick organs. In addition, while adult female ticks were infected, we did not observe C. burnetii in eggs, suggesting that transovarial transmission is not effective. Finally, we detected only a sporadic presence of C. burnetii DNA in tick faeces, but no living bacterium was further isolated in culture assays, suggesting that excretion in faeces is not a common mode of transmission in O. moubata.


Pathogens ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1075
Author(s):  
Salvatore Ledda ◽  
Cinzia Santucciu ◽  
Valentina Chisu ◽  
Giovanna Masala

Q fever is a zoonosis caused by Coxiella burnetii, a Gram-negative pathogen with a complex life cycle and a high impact on public and animal health all over the world. The symptoms are indistinguishable from those belonging to other diseases, and the disease could be symptomless. For these reasons, reliable laboratory tests are essential for an accurate diagnosis. The aim of this study was to validate a novel enzyme-linked immunosorbent assay (ELISA) test, named the Chorus Q Fever Phase II IgG and IgM Kit (DIESSE, Diagnostica Senese S.p.A), which is performed by an instrument named Chorus, a new device in medical diagnostics. This diagnostic test is employed for the detection of antibodies against C. burnetii Phase II antigens in acute disease. Our validation protocol was performed according to the Italian Accreditation Body (ACCREDIA) (Regulation UNI CEI EN ISO/IEC 17025:2018 and 17043:2010), OIE (World Organization for Animal Health), and Statement for Reporting Studies of Diagnostic Accuracy (STARD). Operator performance was evaluated along with the analytical specificity and sensitivity (ASp and ASe) and diagnostic accuracy of the kit, with parameters such as diagnostic specificity and sensitivity (DSp and DSe) and positive and negative predictive values (PPV and NPV), in addition to the repeatability. According to the evaluated parameters, the diagnostic ELISA test was shown to be suitable for validation and commercialization as a screening method in human sera and a valid support for clinical diagnostics.


npj Vaccines ◽  
2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Carrie M. Long ◽  
Paul A. Beare ◽  
Diane C. Cockrell ◽  
Jonathan Fintzi ◽  
Mahelat Tesfamariam ◽  
...  

AbstractCoxiella burnetii is the bacterial causative agent of the zoonosis Q fever. The current human Q fever vaccine, Q-VAX®, is a fixed, whole cell vaccine (WCV) licensed solely for use in Australia. C. burnetii WCV administration is associated with a dermal hypersensitivity reaction in people with pre-existing immunity to C. burnetii, limiting wider use. Consequently, a less reactogenic vaccine is needed. Here, we investigated contributions of the C. burnetii Dot/Icm type IVB secretion system (T4BSS) and lipopolysaccharide (LPS) in protection and reactogenicity of fixed WCVs. A 32.5 kb region containing 23 dot/icm genes was deleted in the virulent Nine Mile phase I (NMI) strain and the resulting mutant was evaluated in guinea pig models of C. burnetii infection, vaccination-challenge, and post-vaccination hypersensitivity. The NMI ∆dot/icm strain was avirulent, protective as a WCV against a robust C. burnetii challenge, and displayed potentially altered reactogenicity compared to NMI. Nine Mile phase II (NMII) strains of C. burnetii that produce rough LPS, were similarly tested. NMI was significantly more protective than NMII as a WCV; however, both vaccines exhibited similar reactogenicity. Collectively, our results indicate that, like phase I LPS, the T4BSS is required for full virulence by C. burnetii. Conversely, unlike phase I LPS, the T4BSS is not required for vaccine-induced protection. LPS length does not appear to contribute to reactogenicity while the T4BSS may contribute to this response. NMI ∆dot/icm represents an avirulent phase I strain with full vaccine efficacy, illustrating the potential of genetically modified C. burnetii as improved WCVs.


Author(s):  
Loïc Epelboin ◽  
Carole Eldin ◽  
Pauline Thill ◽  
Vincent Pommier de Santi ◽  
Philippe Abboud ◽  
...  

Abstract Purpose of Review In this review, we report on the state of knowledge about human Q fever in Brazil and on the Guiana Shield, an Amazonian region located in northeastern South America. There is a contrast between French Guiana, where the incidence of this disease is the highest in the world, and other countries where this disease is practically non-existent. Recent Findings Recent findings are essentially in French Guiana where a unique strain MST17 has been identified; it is probably more virulent than those usually found with a particularly marked pulmonary tropism, a mysterious animal reservoir, a geographical distribution that raises questions. Summary Q fever is a bacterial zoonosis due to Coxiella burnetii that has been reported worldwide. On the Guiana Shield, a region mostly covered by Amazonian forest, which encompasses the Venezuelan State of Bolivar, Guyana, Suriname, French Guiana, and the Brazilian State of Amapá, the situation is very heterogeneous. While French Guiana is the region reporting the highest incidence of this disease in the world, with a single infecting clone (MST 117) and a unique epidemiological cycle, it has hardly ever been reported in other countries in the region. This absence of cases raises many questions and is probably due to massive under-diagnosis. Studies should estimate comprehensively the true burden of this disease in the region.


Sign in / Sign up

Export Citation Format

Share Document