scholarly journals Expression of a fungal exo-β-1,3-galactanase in Arabidopsis reveals a role of type II arabinogalactans in the regulation of cell shape

2020 ◽  
Vol 71 (18) ◽  
pp. 5414-5424
Author(s):  
Yoshihisa Yoshimi ◽  
Katsuya Hara ◽  
Mami Yoshimura ◽  
Nobukazu Tanaka ◽  
Takumi Higaki ◽  
...  

Abstract Arabinogalactan-proteins (AGPs) are a family of plant extracellular proteoglycans implicated in many physiological events. AGP is decorated with type II arabinogalactans (AGs) consisting of a β-1,3-galactan backbone and β-1,6-galactan side chains, to which other sugars are attached. Based on the fact that a type II AG-specific inhibitor, β-Yariv reagent, perturbs growth and development, it has been proposed that type II AGs participate in the regulation of cell shape and tissue organization. However, the mechanisms by which type II AGs participate have not yet been established. Here, we describe a novel system that causes specific degradation of type II AGs in Arabidopsis, by which a gene encoding a fungal exo-β-1,3-galactanase that specifically hydrolyzes β-1,3-galactan backbones of type II AGs is expressed under the control of a dexamethasone-inducible promoter. Dexamethasone treatment increased the galactanase activity, leading to a decrease in Yariv reagent-reactive AGPs in transgenic Arabidopsis. We detected the typical oligosaccharides released from type II AGs by Il3GAL in the soluble fraction, demonstrating that Il3GAL acted on type II AG in the transgenic plants. Additionally, this resulted in severe tissue disorganization in the hypocotyl and cotyledons, suggesting that the degradation of type II AGs affected the regulation of cell shape.

2020 ◽  
Vol 3 (9) ◽  
pp. e202000797
Author(s):  
Olesia Ignatenko ◽  
Joni Nikkanen ◽  
Alexander Kononov ◽  
Nicola Zamboni ◽  
Gulayse Ince-Dunn ◽  
...  

Mitochondrial DNA (mtDNA) depletion syndrome (MDS) is a group of severe, tissue-specific diseases of childhood with unknown pathogenesis. Brain-specific MDS manifests as devastating spongiotic encephalopathy with no curative therapy. Here, we report cell type–specific stress responses and effects of rapamycin treatment and ketogenic diet (KD) in mice with spongiotic encephalopathy mimicking human MDS, as these interventions were reported to improve some mitochondrial disease signs or symptoms. These mice with astrocyte-specific knockout of Twnk gene encoding replicative mtDNA helicase Twinkle (TwKOastro) show wide-spread cell-autonomous astrocyte activation and mitochondrial integrated stress response (ISRmt) induction with major metabolic remodeling of the brain. Mice with neuronal-specific TwKO show no ISRmt. Both KD and rapamycin lead to rapid deterioration and weight loss of TwKOastro and premature trial termination. Although rapamycin had no robust effects on TwKOastro brain pathology, KD exacerbated spongiosis, gliosis, and ISRmt. Our evidence emphasizes that mitochondrial disease treatments and stress responses are tissue- and disease specific. Furthermore, rapamycin and KD are deleterious in MDS-linked spongiotic encephalopathy, pointing to a crucial role of diet and metabolism for mitochondrial disease progression.


Diabetes ◽  
1987 ◽  
Vol 36 (3) ◽  
pp. 274-283 ◽  
Author(s):  
A. D. Baron ◽  
L. Schaeffer ◽  
P. Shragg ◽  
O. G. Kolterman

Diabetes ◽  
1987 ◽  
Vol 36 (11) ◽  
pp. 1341-1350 ◽  
Author(s):  
J. P. Felber ◽  
E. Ferrannini ◽  
A. Golay ◽  
H. U. Meyer ◽  
D. Theibaud ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Cécile Gaston ◽  
Simon De Beco ◽  
Bryant Doss ◽  
Meng Pan ◽  
Estelle Gauquelin ◽  
...  

AbstractAt the basis of cell shape and behavior, the organization of actomyosin and its ability to generate forces are widely studied. However, the precise regulation of this contractile network in space and time is unclear. Here, we study the role of the epithelial-specific protein EpCAM, a contractility modulator, in cell shape and motility. We show that EpCAM is required for stress fiber generation and front-rear polarity acquisition at the single cell level. In fact, EpCAM participates in the remodeling of a transient zone of active RhoA at the cortex of spreading epithelial cells. EpCAM and RhoA route together through the Rab35/EHD1 fast recycling pathway. This endosomal pathway spatially organizes GTP-RhoA to fine tune the activity of actomyosin resulting in polarized cell shape and development of intracellular stiffness and traction forces. Impairment of GTP-RhoA endosomal trafficking either by silencing EpCAM or by expressing Rab35/EHD1 mutants prevents proper myosin-II activity, stress fiber formation and ultimately cell polarization. Collectively, this work shows that the coupling between co-trafficking of EpCAM and RhoA, and actomyosin rearrangement is pivotal for cell spreading, and advances our understanding of how biochemical and mechanical properties promote cell plasticity.


Cancers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 3727
Author(s):  
Dafne Jacome Sanz ◽  
Juuli Raivola ◽  
Hanna Karvonen ◽  
Mariliina Arjama ◽  
Harlan Barker ◽  
...  

Background: Dysregulated lipid metabolism is emerging as a hallmark in several malignancies, including ovarian cancer (OC). Specifically, metastatic OC is highly dependent on lipid-rich omentum. We aimed to investigate the therapeutic value of targeting lipid metabolism in OC. For this purpose, we studied the role of PCSK9, a cholesterol-regulating enzyme, in OC cell survival and its downstream signaling. We also investigated the cytotoxic efficacy of a small library of metabolic (n = 11) and mTOR (n = 10) inhibitors using OC cell lines (n = 8) and ex vivo patient-derived cell cultures (PDCs, n = 5) to identify clinically suitable drug vulnerabilities. Targeting PCSK9 expression with siRNA or PCSK9 specific inhibitor (PF-06446846) impaired OC cell survival. In addition, overexpression of PCSK9 induced robust AKT phosphorylation along with increased expression of ERK1/2 and MEK1/2, suggesting a pro-survival role of PCSK9 in OC cells. Moreover, our drug testing revealed marked differences in cytotoxic responses to drugs targeting metabolic pathways of high-grade serous ovarian cancer (HGSOC) and low-grade serous ovarian cancer (LGSOC) PDCs. Our results show that targeting PCSK9 expression could impair OC cell survival, which warrants further investigation to address the dependency of this cancer on lipogenesis and omental metastasis. Moreover, the differences in metabolic gene expression and drug responses of OC PDCs indicate the existence of a metabolic heterogeneity within OC subtypes, which should be further explored for therapeutic improvements.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Xin Ping Li ◽  
Lu Lu Zhou ◽  
Yan Hua Guo ◽  
Jian Wen Wang

Abstract Background Adenosine 5′-triphosphate (ATP) plays both a central role as an intracellular energy source, and a crucial extracellular signaling role in diverse physiological processes of animals and plants. However, there are less reports concerning the signaling role of microbial extracellular ATP (eATP). Hypocrellins are effective anticancer photodynamic therapy (PDT) agents from bambusicolous Shiraia fungi. The co-culture of Shiraia sp. S9 and a bacterium Pseudomonas fulva SB1 isolated from Shiraia fruiting bodies was established for enhanced hypocrellin A (HA) production. The signaling roles of eATP to mediate hypocrellin biosynthesis were investigated in the co-culture. Results The co-culture induced release of eATP at 378 nM to the medium around 4 h. The eATP release was interdependent on cytosolic Ca2+ concentration and reactive oxygen species (ROS) production, respectively. The eATP production could be suppressed by the Ca2+ chelator EGTA or abolished by the channel blocker La3+, ROS scavenger vitamin C and NADPH oxidase inhibitor diphenyleneiodonium chloride (DPI). The bacterium-induced H2O2 production was strongly inhibited by reactive blue (RB), a specific inhibitor of membrane purinoceptors, but dependent on the induced Ca2+ influx in the co-culture. On the other hand, the application of exogenous ATP (exATP) at 10–300 µM to Shiraia cultures also promoted fungal conidiation and HA production, both of which were blocked effectively by the purinoceptor inhibitors pyridoxalphosphate-6-azophenyl-2′, 4′-disulfonic acid (PPADS) and RB, and ATP hydrolase apyrase. Both the induced expression of HA biosynthetic genes and HA accumulation were inhibited significantly under the blocking of the eATP or Ca2+ signaling, and the scavenge of ROS in the co-culture. Conclusions Our results indicate that eATP release is an early event during the intimate bacterial–fungal interaction and eATP plays a signaling role in the bacterial elicitation on fungal metabolites. Ca2+ and ROS are closely linked for activation of the induced ATP release and its signal transduction. This is the first report on eATP production in the fungal–bacterial co-culture and its involvement in the induced biosynthesis of fungal metabolites. Graphic abstract


Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1641
Author(s):  
Emily E. S. Brettschneider ◽  
Masaki Terabe

Glioblastoma is an aggressive and deadly cancer, but to date, immunotherapies have failed to make significant strides in improving prognoses for glioblastoma patients. One of the current challenges to developing immunological interventions for glioblastoma is our incomplete understanding of the numerous immunoregulatory mechanisms at play in the glioblastoma tumor microenvironment. We propose that Natural Killer T (NKT) cells, which are unconventional T lymphocytes that recognize lipid antigens presented by CD1d molecules, may play a key immunoregulatory role in glioblastoma. For example, evidence suggests that the activation of type I NKT cells can facilitate anti-glioblastoma immune responses. On the other hand, type II NKT cells are known to play an immunosuppressive role in other cancers, as well as to cross-regulate type I NKT cell activity, although their specific role in glioblastoma remains largely unclear. This review provides a summary of our current understanding of NKT cells in the immunoregulation of glioblastoma as well as highlights the involvement of NKT cells in other cancers and central nervous system diseases.


Sign in / Sign up

Export Citation Format

Share Document