Cellular Processes

2021 ◽  
pp. 204-208
Author(s):  
Nathan P. Staff ◽  
Nicolas N. Madigan

Although cells in the nervous system contain all the cellular machinery that exists in other cells throughout the body, nervous system cells have many specialized functions that present unique challenges in the maintenance of cellular functionality and homeostasis. The unique morphology of neurons demands elaborate cytoarchitecture, energy production, and cellular processing machinery that are unparalleled in other parts of the body. This chapter presents a broad overview of cellular processes related to the cytoskeleton, axonal transport, protein processing, and energy metabolism within the nervous system. Breakdowns of these intricate processes are involved in many diseases of the nervous system, which are discussed in subsequent chapters.

Author(s):  
Wiktor Djaczenko ◽  
Carmen Calenda Cimmino

The simplicity of the developing nervous system of oligochaetes makes of it an excellent model for the study of the relationships between glia and neurons. In the present communication we describe the relationships between glia and neurons in the early periods of post-embryonic development in some species of oligochaetes.Tubifex tubifex (Mull. ) and Octolasium complanatum (Dugès) specimens starting from 0. 3 mm of body length were collected from laboratory cultures divided into three groups each group fixed separately by one of the following methods: (a) 4% glutaraldehyde and 1% acrolein fixation followed by osmium tetroxide, (b) TAPO technique, (c) ruthenium red method.Our observations concern the early period of the postembryonic development of the nervous system in oligochaetes. During this period neurons occupy fixed positions in the body the only observable change being the increase in volume of their perikaryons. Perikaryons of glial cells were located at some distance from neurons. Long cytoplasmic processes of glial cells tended to approach the neurons. The superimposed contours of glial cell processes designed from electron micrographs, taken at the same magnification, typical for five successive growth stages of the nervous system of Octolasium complanatum are shown in Fig. 1. Neuron is designed symbolically to facilitate the understanding of the kinetics of the growth process.


Author(s):  
W.A. Jacob ◽  
R. Hertsens ◽  
A. Van Bogaert ◽  
M. De Smet

In the past most studies of the control of energy metabolism focus on the role of the phosphorylation potential ATP/ADP.Pi on the regulation of respiration. Studies using NMR techniques have demonstrated that the concentrations of these compounds for oxidation phosphorylation do not change appreciably throughout the cardiac cycle and during increases in cardiac work. Hence regulation of energy production by calcium ions, present in the mitochondrial matrix, has been the object of a number of recent studies.Three exclusively intramitochondnal dehydrogenases are key enzymes for the regulation of oxidative metabolism. They are activated by calcium ions in the low micromolar range. Since, however, earlier estimates of the intramitochondnal calcium, based on equilibrium thermodynamic considerations, were in the millimolar range, a physiological correlation was not evident. The introduction of calcium-sensitive probes fura-2 and indo-1 made monitoring of free calcium during changing energy metabolism possible. These studies were performed on isolated mitochondria and extrapolation to the in vivo situation is more or less speculative.


Author(s):  
F. L. Azizova ◽  
U. A. Boltaboev

The features of production factors established at the main workplaces of shoe production are considered. The materials on the results of the study of the functional state of the central nervous system of women workers of shoe production in the dynamics of the working day are presented. The level of functional state of the central nervous system was determined by the speed of visual and auditory-motor reactions, installed using the universal device chronoreflexometer. It was revealed that in the body of workers of shoe production there is an early development of inhibitory processes in the central nervous system, which is expressed in an increase in the number of errors when performing tasks on proofreading tables. It was found that the most pronounced shift s in auditory-motor responses were observed in professional groups, where higher levels of noise were registered in the workplace. The correlation analysis showed a close direct relationship between the growth of mistakes made in the market and the decrease in production. An increase in the time spent on the task indicates the occurrence and growth of production fatigue.Funding. The study had no funding.Conflict of interests. The authors declare no conflict of interests.


Author(s):  
Natalya L. Yakimova ◽  
Vladimir A. Pankov ◽  
Aleksandr V. Lizarev ◽  
Viktor S. Rukavishnikov ◽  
Marina V. Kuleshova ◽  
...  

Introduction. Vibration disease continues to occupy one of the leading places in the structure of professional pathology. In workers after the termination of contact with vibration generalization and progression of violations in an organism is noted. The pathogenetic mechanisms of the progredient course of disturbances in the nervous system in the post-contact period of vibration exposure remain insufficiently studied.The aim of the study was to test an experimental model of vibration exposure to assess the neurophysiological and morphological effects of vibration in rats in the dynamics of the post-contact period.Materials and methods. The work was performed on 168 white male outbred rats aged 3 months weighing 180–260 g. The vibration effect was carried out on a 40 Hz vibrating table for 60 days 5 times a week for 4 hours a day. Examination of animals was performed after the end of the physical factor, on the 30th, 60th and 120th day of the post-contact period. To assess the long-term neurophysiological and morphofunctional effects of vibration in rats, we used indicators of behavioral reactions, bioelectric activity of the somatosensory zone of the cerebral cortex, somatosensory and visual evoked potentials, parameters of muscle response, morphological parameters of nervous tissue.Results. In the dynamics of the post-contact period observed the preservation of violations of tentatively research, motor and emotional components of behavior. In the Central nervous system instability of activity of rhythms of an electroencephalogram, decrease in amplitude of visual evoked potentials, lengthening of latency of somatosensory evoked potentials, decrease in total number of normal neurons and astroglia is established. In the peripheral nervous system remained changes in indicators: increasing duration and latency, reducing the amplitude of the neuromuscular response.Conclusions: The experimental model allows us to study the long-term neurophysiological and morphological effects of vibration on the body. The formation and preservation of changes in behavioral activity, neurophysiological and morphological effects of vibration from the 30th to the 120th day of the post-contact period were confirmed.


2018 ◽  
Author(s):  
Pedro Silva Moreira ◽  
Pedro Chaves ◽  
Nuno Dias ◽  
Patrício Costa ◽  
Pedro Rocha Almeida

Background: The search for autonomic correlates of emotional processing has been a matter of interest for the scientific community with the goal of identifying the physiological basis of emotion. Despite an extensive state-of-the-art exploring the correlates of emotion, there is no absolute consensus regarding how the body processes an affective state.Objectives: In this work, we aimed to aggregate the literature of psychophysiological studies in the context of emotional induction. Methods: For this purpose, we conducted a systematic review of the literature and a meta-analytic investigation, comparing different measures from the electrodermal, cardiovascular, respiratory and facial systems across emotional categories/dimensions. Two-hundred and ninety-one studies met the inclusion criteria and were quantitatively pooled in random-effects meta-analytic modelling. Results: Heart rate and skin conductance level were the most reported psychophysiological measures. Overall, there was a negligible differentiation between emotional categories with respect to the pooled estimates. Of note, considerable amount of between-studies’ heterogeneity was found in the meta-analytic aggregation. Self-reported ratings of emotional arousal were found to be associated with specific autonomic-nervous system (ANS) indices, particularly with the variation of the skin conductance level. Conclusions: Despite this clear association, there is still a considerable amount of unexplained variability that raises the need for more fine-grained analysis to be implemented in future research in this field.


Author(s):  
Prithiv K R Kumar

Stem cells have the capacity to differentiate into any type of cell or organ. Stems cell originate from any part of the body, including the brain. Brain cells or rather neural stem cells have the capacitive advantage of differentiating into the central nervous system leading to the formation of neurons and glial cells. Neural stem cells should have a source by editing DNA, or by mixings chemical enzymes of iPSCs. By this method, a limitless number of neuron stem cells can be obtained. Increase in supply of NSCs help in repairing glial cells which in-turn heal the central nervous system. Generally, brain injuries cause motor and sensory deficits leading to stroke. With all trials from novel therapeutic methods to enhanced rehabilitation time, the economy and quality of life is suppressed. Only PSCs have proven effective for grafting cells into NSCs. Neurons derived from stem cells is the only challenge that limits in-vitro usage in the near future.


2019 ◽  
Vol 25 (26) ◽  
pp. 2892-2905 ◽  
Author(s):  
Sumit Jamwal ◽  
Ashish Mittal ◽  
Puneet Kumar ◽  
Dana M. Alhayani ◽  
Amal Al-Aboudi

Adenosine is a naturally occurring nucleoside and an essential component of the energy production and utilization systems of the body. Adenosine is formed by the degradation of adenosine-triphosphate (ATP) during energy-consuming processes. Adenosine regulates numerous physiological processes through activation of four subtypes of G-protein coupled membrane receptors viz. A1, A2A, A2B and A3. Its physiological importance depends on the affinity of these receptors and the extracellular concentrations reached. ATP acts as a neurotransmitter in both peripheral and central nervous systems. In the peripheral nervous system, ATP is involved in chemical transmission in sensory and autonomic ganglia, whereas in central nervous system, ATP, released from synaptic terminals, induces fast excitatory postsynaptic currents. ATP provides the energetics for all muscle movements, heart beats, nerve signals and chemical reactions inside the body. Adenosine has been traditionally considered an inhibitor of neuronal activity and a regulator of cerebral blood flow. Since adenosine is neuroprotective against excitotoxic and metabolic dysfunctions observed in neurological and ocular diseases, the search for adenosinerelated drugs regulating adenosine transporters and receptors can be important for advancement of therapeutic strategies against these diseases. This review will summarize the therapeutic potential and recent SAR and pharmacology of adenosine and its receptor agonists and antagonists.


2020 ◽  
Vol 22 (1) ◽  
pp. 105-111
Author(s):  
Lin Zheng ◽  
Weibiao Lv ◽  
Yuanqing Zhou ◽  
Xu Lin ◽  
Jie Yao

: Since its discovery more than 100 years ago, aspirin has been widely used for its antipyretic, analgesic, anti-inflammatory, and anti-rheumatic activities. In addition to these applications, it is increasingly becoming clear that the drug also has great potential in the field of cancer. Here, we briefly review current insights of aspirin’s anti-tumor effects. These are multiple and vary from inhibiting the major cellular mTOR pathways, acting as a calorie-restricted mimetic by inhibition of energy production, suppressing platelet aggregation and granule release, inhibiting immune escape of tumor cells, to decreasing inflammatory responses. We consider these five mechanisms of action the most significant of aspirin’s anti-tumor effects, whereby the anti-tumor effect may ultimately stem from its inhibition of energy metabolism, platelet function, and inflammatory response. As such, aspirin can play an important role to reduce the occurrence, proliferation, and metastasis of various types of tumors. However, most of the collected data are still based on epidemiological investi-gations. More direct and effective evidence is needed, and the side effects of aspirin intake need to be solved before this drug can be widely applied in cancer treatment.


Parasitology ◽  
1941 ◽  
Vol 33 (4) ◽  
pp. 373-389 ◽  
Author(s):  
Gwendolen Rees

1. The structure of the proboscides of the larva of Dibothriorhynchus grossum (Rud.) is described. Each proboscis is provided with four sets of extrinsic muscles, and there is an anterior dorso-ventral muscle mass connected to all four proboscides.2. The musculature of the body and scolex is described.3. The nervous system consists of a brain, two lateral nerve cords, two outer and inner anterior nerves on each side, twenty-five pairs of bothridial nerves to each bothridium, four longitudinal bothridial nerves connecting these latter before their entry into the bothridia, four proboscis nerves arising from the brain, and a series of lateral nerves supplying the lateral regions of the body.4. The so-called ganglia contain no nerve cells, these are present only in the posterior median commissure which is therefore the nerve centre.


Antioxidants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1090
Author(s):  
Ursula Abou-Rjeileh ◽  
G. Andres Contreras

Lipid mobilization in adipose tissues, which includes lipogenesis and lipolysis, is a paramount process in regulating systemic energy metabolism. Reactive oxygen and nitrogen species (ROS and RNS) are byproducts of cellular metabolism that exert signaling functions in several cellular processes, including lipolysis and lipogenesis. During lipolysis, the adipose tissue generates ROS and RNS and thus requires a robust antioxidant response to maintain tight regulation of redox signaling. This review will discuss the production of ROS and RNS within the adipose tissue, their role in regulating lipolysis and lipogenesis, and the implications of antioxidants on lipid mobilization.


Sign in / Sign up

Export Citation Format

Share Document