Textbook of Evolutionary Psychiatry and Psychosomatic Medicine

Author(s):  
Martin Brüne

Psychiatry and psychosomatic medicine are concerned with medical conditions affecting the brain, mind, and behaviour in manifold ways. Traditional approaches have focused on a restricted array of potential causes of psychiatric and psychosomatic conditions, including adverse experiences such as trauma, neglect, or abuse, genetic vulnerability, and epigenetic regulation of gene expression. While essential for the understanding of mental disorders, these approaches have disregarded pertinent questions such as why the human mind is vulnerable to dysfunction at all. This Textbook of Evolutionary Psychiatry and Psychosomatic Medicine seeks to find answers to these questions by emphasizing an evolutionary perspective on psychiatric and psychosomatic conditions. It explains how the human brain/mind has been shaped by natural and sexual selection; why adaptations to environmental conditions in our evolutionary past may nowadays work in suboptimal ways; and how human cognition, emotions, and behaviour can be scientifically framed to improve our understanding of how people try to attain important biosocial goals pertaining to one’s status in society, mating, eliciting and providing care, and maintaining rewarding relationships. The evolutionary topics relevant to the understanding of psychiatric and psychosomatic conditions include the concepts of genetic plasticity, life-history theory, stress regulation, and immunological aspects. In addition, it is argued that an evolutionary framework is necessary to understand how psychotherapy and psychopharmacology work to improve the lives of patients with psychiatric and psychosomatic disorders.

Author(s):  
Martin Brüne

Darwin’s work on evolution by natural and sexual selection is the central scientific framework in biology that explains how life developed through adaptation to changing environments. Evolution has been the driving force that has shaped the human brain and mind in the same way as it has formed somatic traits. Many adaptations pertaining to human cognition, emotions, and behaviour emerged in ancestral environments of evolutionary adaptedness, from which modern living conditions deviate in one way or another. Such ‘mismatches’ of evolved traits and current environments may cause vulnerability to dysfunctional operation of cognitive, emotional, and behavioural traits. Genes and environment interact in manifold ways, yet genetic plasticity may not only convey vulnerability to dysfunction. Instead, the very same genetic variants that may lead to dysfunction when associated with environmental adversity exert protective effects against dysfunction when environments are more favourable. These insights have yet to be acknowledged by psychiatry and psychosomatic medicine.


2020 ◽  
Vol 26 (13) ◽  
pp. 1448-1465 ◽  
Author(s):  
Jozef Hanes ◽  
Eva Dobakova ◽  
Petra Majerova

Tauopathies are neurodegenerative disorders characterized by the deposition of abnormal tau protein in the brain. The application of potentially effective therapeutics for their successful treatment is hampered by the presence of a naturally occurring brain protection layer called the blood-brain barrier (BBB). BBB represents one of the biggest challenges in the development of therapeutics for central nervous system (CNS) disorders, where sufficient BBB penetration is inevitable. BBB is a heavily restricting barrier regulating the movement of molecules, ions, and cells between the blood and the CNS to secure proper neuronal function and protect the CNS from dangerous substances and processes. Yet, these natural functions possessed by BBB represent a great hurdle for brain drug delivery. This review is concentrated on summarizing the available methods and approaches for effective therapeutics’ delivery through the BBB to treat neurodegenerative disorders with a focus on tauopathies. It describes the traditional approaches but also new nanotechnology strategies emerging with advanced medical techniques. Their limitations and benefits are discussed.


Author(s):  
Vadim V. Vasilyev ◽  

In this paper I discuss some aspects of the problem of carriers of human mind and person. The main emphasis is placed on the origin of our idea of the identi­cal self in the stream of perceptions, the need for a physical carrier of our self and person, and on possibility of replacing the biological carriers of self and per­son with artificial analogues. I argue that the idea of identical self is constructed by reflection on memories, that its truth is guaranteed by continuous stream of perceptions kept in memories, and that the stream of perceptions presupposes the presence of a normally functioning brain, which can be considered as a car­rier of our mind and person. Therefore, personal identity turns out to be depen­dent on the identity of the brain in time. An attempt to copy the structures of mind and person onto other possible carriers can thus only lead to creation of duplicates of the original person, but not to the continuation of its existence on another carrier. I argue that the gradual replacement of their components with artificial analogues is a more promising way of transforming the biological carri­ers of human person. To access the possible consequences of such a replacement I analyze arguments of John Searle and David Chalmers, designed to show, re­spectively, the disappearance of consciousness and person with such a replace­ment and, on the contrary, their preservation in a previous state. I explain why Searle’s arguments are unconvincing, and demonstrate that Chalmers’ arguments are based on a hidden premise, the confirmation of which is possible in the con­text of dubious theories of mind-body identity, epiphenomenalism or panpsy­chism only. I conclude that in the current situation it is impossible to predict which consequences for our person would follow such a replacement.


2018 ◽  
Vol 2 ◽  
pp. 239821281881262 ◽  
Author(s):  
Elaine Fox

Emotions are at the heart of how we understand the human mind and of our relationships within the social world. Yet, there is still no scientific consensus on the fundamental nature of emotion. A central quest within the discipline of affective science is to develop an in-depth understanding of emotions, moods, and feelings and how they are embodied within the brain (affective neuroscience). This article provides a brief overview of the scientific study of emotion with a particular emphasis on psychological and neuroscientific perspectives. Following a selective snapshot of past and present research in this field, some current challenges and controversies in affective science are highlighted.


1982 ◽  
Vol 11 ◽  
pp. 74-86 ◽  
Author(s):  
Kaj Björkqvist

The biological study of man is one of today's most rapidly advancing sciences. There is no reason for not utilizing these methodologies of research and the knowledge already gained when studying ecstasy and other similar religious phenomena. Drugs have been used in all parts of the world as an ecstasy technique. Since mental states and physiological correlates always accompany each other, it is obvious that the human mind can be affected by external means, for instance by drugs. But the opposite is also true; mental changes affect the body, as they do in the case of psychosomatic diseases. Ecstasy is often described as an extremely joyful experience; this pleasure must necessarily also have a physiological basis. It is of course too early to say anything for certain, but the discovery of pleasure centres in the brain might offer an explanation. It is not far-fetched to suggest that when a person experiences euphoric ecstasy, it might, in some way or other, be connected with a cerebral pleasure center. Can it be, for example, that religious ecstasy is attained only by some mechanism triggering off changes in the balance of the transmitter substances? Or is it reached only via a change in the hormonal balance, or only by a slowing down of the brain waves, or is a pleasure centre activated? When a person is using an ecstasy technique, he usually does so within a religious tradition. When he reaches an experience, a traditional interpretation of it already exists.


2019 ◽  
Author(s):  
Jeffrey N. Chiang ◽  
Yujia Peng ◽  
Hongjing Lu ◽  
Keith J. Holyoak ◽  
Martin M. Monti

AbstractThe ability to generate and process semantic relations is central to many aspects of human cognition. Theorists have long debated whether such relations are coded as atomistic links in a semantic network, or as distributed patterns over some core set of abstract relations. The form and content of the conceptual and neural representations of semantic relations remains to be empirically established. The present study combined computational modeling and neuroimaging to investigate the representation and comparison of abstract semantic relations in the brain. By using sequential presentation of verbal analogies, we decoupled the neural activity associated with encoding the representation of the first-order semantic relation between words in a pair from that associated with the second-order comparison of two relations. We tested alternative computational models of relational similarity in order to distinguish between rival accounts of how semantic relations are coded and compared in the brain. Analyses of neural similarity patterns supported the hypothesis that semantic relations are coded, in the parietal cortex, as distributed representations over a pool of abstract relations specified in a theory-based taxonomy. These representations, in turn, provide the immediate inputs to the process of analogical comparison, which draws on a broad frontoparietal network. This study sheds light not only on the form of relation representations but also on their specific content.SignificanceRelations provide basic building blocks for language and thought. For the past half century, cognitive scientists exploring human semantic memory have sought to identify the code for relations. In a neuroimaging paradigm, we tested alternative computational models of relation processing that predict patterns of neural similarity during distinct phases of analogical reasoning. The findings allowed us to draw inferences not only about the form of relation representations, but also about their specific content. The core of these distributed representations is based on a relatively small number of abstract relation types specified in a theory-based taxonomy. This study helps to resolve a longstanding debate concerning the nature of the conceptual and neural code for semantic relations in the mind and brain.


2021 ◽  
Author(s):  
Yuta Katsumi ◽  
Karen Quigley ◽  
Lisa Feldman Barrett

It is now well known that brain evolution, development, and structure do not respect Western folk categories of mind – that is, the boundaries of those folk categories have never been identified in nature, despite decades of search. Categories for cognitions, emotions, perceptions, and so on, may be useful for describing the mental phenomena that constitute a human mind, but they make a poor starting point for understanding the interplay of mechanisms that create those mental events in the first place. In this paper, we integrate evolutionary, developmental, anatomical, and functional evidence and propose that predictive regulation of the body’s internal systems (allostasis) and modeling the sensory consequences of this regulation (interoception) may be basic functions of the brain that are embedded in coordinated structural and functional gradients. Our approach offers the basis for a coherent, neurobiologically-inspired research program that attempts to explain how a variety of psychological and physical phenomena may emerge from the same biological mechanisms, thus providing an opportunity to unify them under a common explanatory framework that can be used to develop shared vocabulary for theory building and knowledge accumulation.


2006 ◽  
Vol 19 (1) ◽  
pp. 175-189 ◽  
Author(s):  
Allan Young

ArgumentThroughout his career as a writer, Sigmund Freud maintained an interest in the evolutionary origins of the human mind and its neurotic and psychotic disorders. In common with many writers then and now, he believed that the evolutionary past is conserved in the mind and the brain. Today the “evolutionary Freud” is nearly forgotten. Even among Freudians, he is regarded to be a red herring, relevant only to the extent that he diverts attention from the enduring achievements of the authentic Freud. There are three ways to explain these attitudes. First, the evolutionary Freud's key work is the “Overview of the Transference Neurosis” (1915). But it was published at an inopportune moment, forty years after the author's death, during the so-called “Freud wars.” Second, Freud eventually lost interest in the “Overview” and the prospect of a comprehensive evolutionary theory of psychopathology. The publication of The Ego and the Id (1923), introducing Freud's structural theory of the psyche, marked the point of no return. Finally, Freud's evolutionary theory is simply not credible. It is based on just-so stories and a thoroughly discredited evolutionary mechanism, Lamarckian use-inheritance. Explanations one and two are probably correct but also uninteresting. Explanation number three assumes that there is a fundamental difference between Freud's evolutionary narratives (not credible) and the evolutionary accounts of psychopathology that currently circulate in psychiatry and mainstream journals (credible). The assumption is mistaken but worth investigating.


Neurology ◽  
2017 ◽  
Vol 88 (7) ◽  
pp. 685-691 ◽  
Author(s):  
Brett L. Foster ◽  
Josef Parvizi

Background:The posteromedial cortex (PMC) is a collective term for an anatomically heterogeneous area of the brain constituting a core node of the human default mode network (DMN), which is engaged during internally focused subjective cognition such as autobiographical memory.Methods:We explored the effects of causal perturbations of PMC with direct electric brain stimulation (EBS) during presurgical epilepsy monitoring with intracranial EEG electrodes.Results:Data were collected from 885 stimulations in 25 patients implanted with intracranial electrodes across the PMC. While EBS of regions immediately dorsal or ventral to the PMC reliably produced somatomotor or visual effects, respectively, we found no observable behavioral or subjectively reported effects when sites within the boundaries of PMC were electrically perturbed. In each patient, null effects of PMC stimulation were observed for sites in which intracranial recordings had clearly demonstrated electrophysiologic responses during autobiographical recall.Conclusions:Direct electric modulation of the human PMC produced null effects when standard functional mapping methods were used. More sophisticated stimulation paradigms (e.g., EBS during experimental cognitive tests) will be required for testing the causal contribution of PMC to human cognition and subjective experience. Nonetheless, our findings suggest that some extant theories of PMC and DMN contribution to human awareness and subjective conscious states require cautious re-examination.


Sign in / Sign up

Export Citation Format

Share Document