scholarly journals Direct collapse to supermassive black hole seeds: the critical conditions for suppression of H2 cooling

2020 ◽  
Vol 492 (4) ◽  
pp. 4917-4926
Author(s):  
Yang Luo ◽  
Isaac Shlosman ◽  
Kentaro Nagamine ◽  
Taotao Fang

ABSTRACT Observations of high-redshift quasars imply the presence of supermassive black holes (SMBHs) already at $z$ ∼ 7.5. An appealing and promising pathway to their formation is the direct collapse scenario of a primordial gas in atomic-cooling haloes at $z$ ∼ 10–20, when the $\rm H_{2}$ formation is inhibited by a strong background radiation field, whose intensity exceeds a critical value, Jcrit. To estimate Jcrit, typically, studies have assumed idealized spectra, with a fixed ratio of $\rm H_{2}$ photodissociation rate $k_{\rm H_2}$ to the $\rm H^-$ photodetachment rate $k_{\rm H^-}$. This assumption, however, could be too narrow in scope as the nature of the background radiation field is not known precisely. In this work we argue that the critical condition for suppressing the H2 cooling in the collapsing gas could be described in a more general way by a combination of $k_{\rm H_2}$ and $k_{\rm H^-}$ parameters, without any additional assumptions about the shape of the underlying radiation spectrum. By performing a series of cosmological zoom-in simulations covering a wide range of relevant $k_{\rm H_2}$ and $k_{\rm H^-}$ parameters, we examine the gas flow by following evolution of basic parameters of the accretion flow. We test under what conditions the gas evolution is dominated by $\rm H_{2}$ and/or atomic cooling. We confirm the existence of a critical curve in the $k_{\rm H_2}{\!-\!}k_{\rm H^-}$ plane and provide an analytical fit to it. This curve depends on the conditions in the direct collapse, and reveals domains where the atomic cooling dominates over the molecular cooling. Furthermore, we have considered the effect of $\rm H_{2}$ self-shielding on the critical curve, by adopting three methods for the effective column density approximation in $\rm H_{2}$. We find that the estimate of the characteristic length scale for shielding can be improved by using λJeans25, which is 0.25 times that of the local Jeans length, which is consistent with previous one-zone modelling.

Materials ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 2931
Author(s):  
Soumya Banerjee ◽  
Ek Adhikari ◽  
Pitambar Sapkota ◽  
Amal Sebastian ◽  
Sylwia Ptasinska

Atmospheric pressure plasma (APP) deposition techniques are useful today because of their simplicity and their time and cost savings, particularly for growth of oxide films. Among the oxide materials, titanium dioxide (TiO2) has a wide range of applications in electronics, solar cells, and photocatalysis, which has made it an extremely popular research topic for decades. Here, we provide an overview of non-thermal APP deposition techniques for TiO2 thin film, some historical background, and some very recent findings and developments. First, we define non-thermal plasma, and then we describe the advantages of APP deposition. In addition, we explain the importance of TiO2 and then describe briefly the three deposition techniques used to date. We also compare the structural, electronic, and optical properties of TiO2 films deposited by different APP methods. Lastly, we examine the status of current research related to the effects of such deposition parameters as plasma power, feed gas, bias voltage, gas flow rate, and substrate temperature on the deposition rate, crystal phase, and other film properties. The examples given cover the most common APP deposition techniques for TiO2 growth to understand their advantages for specific applications. In addition, we discuss the important challenges that APP deposition is facing in this rapidly growing field.


Author(s):  
Marta B. Silva ◽  
Ely D. Kovetz ◽  
Garrett K. Keating ◽  
Azadeh Moradinezhad Dizgah ◽  
Matthieu Bethermin ◽  
...  

AbstractThis paper outlines the science case for line-intensity mapping with a space-borne instrument targeting the sub-millimeter (microwaves) to the far-infrared (FIR) wavelength range. Our goal is to observe and characterize the large-scale structure in the Universe from present times to the high redshift Epoch of Reionization. This is essential to constrain the cosmology of our Universe and form a better understanding of various mechanisms that drive galaxy formation and evolution. The proposed frequency range would make it possible to probe important metal cooling lines such as [CII] up to very high redshift as well as a large number of rotational lines of the CO molecule. These can be used to trace molecular gas and dust evolution and constrain the buildup in both the cosmic star formation rate density and the cosmic infrared background (CIB). Moreover, surveys at the highest frequencies will detect FIR lines which are used as diagnostics of galaxies and AGN. Tomography of these lines over a wide redshift range will enable invaluable measurements of the cosmic expansion history at epochs inaccessible to other methods, competitive constraints on the parameters of the standard model of cosmology, and numerous tests of dark matter, dark energy, modified gravity and inflation. To reach these goals, large-scale structure must be mapped over a wide range in frequency to trace its time evolution and the surveyed area needs to be very large to beat cosmic variance. Only a space-borne mission can properly meet these requirements.


2001 ◽  
Vol 19 (4) ◽  
pp. 579-595 ◽  
Author(s):  
D. MOSHER ◽  
B.V. WEBER ◽  
B. MOOSMAN ◽  
R.J. COMMISSO ◽  
P. COLEMAN ◽  
...  

High-sensitivity interferometry measurements of initial density distributions are reviewed for a wide range of gas-puff nozzles used in plasma radiation source (PRS) z-pinch experiments. Accurate gas distributions are required for determining experimental load parameters, modeling implosion dynamics, understanding the radiation properties of the stagnated pinch, and for predicting PRS performance in future experiments. For a number of these nozzles, a simple ballistic-gas-flow model (BFM) has been used to provide good physics-based analytic fits to the measured r, z density distributions. These BFM fits provide a convenient means to smoothly interpolate radial density distributions between discrete axial measurement locations for finer-zoned two-dimensional MHD calculations, and can be used to determine how changes in nozzle parameters and load geometry might alter implosion dynamics and radiation performance. These measurement and analysis techniques are demonstrated for a nested-shell nozzle used in Double Eagle and Saturn experiments. For this nozzle, the analysis suggests load modifications that may increase the K-shell yield.


1996 ◽  
Vol 168 ◽  
pp. 17-29
Author(s):  
John C. Mather

The Cosmic Background Explorer (COBE) was developed by NASA Goddard Space Flight Center to measure the diffuse infrared and microwave radiation from the early universe. It also measured emission from nearby sources such as the stars, dust, molecules, atoms, ions, and electrons in the Milky Way, and dust and comets in the Solar System. It was launched 18 November 1989 on a Delta rocket, carrying one microwave instrument and two cryogenically cooled infrared instruments. The Far Infrared Absolute Spectrophotometer (FIRAS) mapped the sky at wavelengths from 0.01 to 1 cm, and compared the CMBR to a precise blackbody. The spectrum of the CMBR differs from a blackbody by less than 0.03%. The Differential Microwave Radiometers (DMR) measured the fluctuations in the CMBR originating in the Big Bang, with a total amplitude of 11 parts per million on a 10° scale. These fluctuations are consistent with scale-invariant primordial fluctuations. The Diffuse Infrared Background Experiment (DIRBE) spanned the wavelength range from 1.2 to 240 μm and mapped the sky at a wide range of solar elongation angles to distinguish foreground sources from a possible extragalactic Cosmic Infrared Background Radiation (CIBR). In this paper we summarize the COBE mission and describe the results from the FIRAS instrument. The results from the DMR and DIRBE were described by Smoot and Hauser at this Symposium.


Author(s):  
Ehsan Roohi ◽  
Masoud Darbandi ◽  
Vahid Mirjalili

The current research uses an unstructured direct simulation Monte Carlo (DSMC) method to numerically investigate supersonic and subsonic flow behavior in micro convergent–divergent nozzle over a wide range of rarefied regimes. The current unstructured DSMC solver has been suitably modified via using uniform distribution of particles, employing proper subcell geometry, and benefiting from an advanced molecular tracking algorithm. Using this solver, we study the effects of back pressure, gas/surface interactions (diffuse/specular reflections), and Knudsen number, on the flow field in micronozzles. We show that high viscous force manifesting in boundary layers prevents supersonic flow formation in the divergent section of nozzles as soon as the Knudsen number increases above a moderate magnitude. In order to accurately simulate subsonic flow at the nozzle outlet, it is necessary to add a buffer zone to the end of nozzle. If we apply the back pressure at the outlet, boundary layer separation is observed and a region of backward flow appears inside the boundary layer while the core region of inviscid flow experiences multiple shock-expansion waves. We also show that the wall boundary layer prevents forming shocks in the divergent part. Alternatively, Mach cores appear at the nozzle center followed by bow shocks and an expansion region.


2011 ◽  
Vol 464 ◽  
pp. 749-752 ◽  
Author(s):  
Jian Hui Zhang ◽  
Xin Chen

The structure and property of pyrocarbon varies widely with different deposition conditions. The isotropic carbon which can only been deposited in the bed of fluidized particles is very important in biomedical fields, for instance, it is often used as the coating of artificial heart valve components. The deposition of isotropic pyrocarbon containing silicon is experimented in fluidized bed over a wide range of deposition conditions. The results show that bed temperature influences strongly average coating rate, coating density, silicon content and coating micro-hardness. Propane concentration has a much effect on coating density, carbon matrix density and isotropic characteristics. Total gas flow rate and inlet dimension of fluidized bed affect the formation of fluidized bed.


2016 ◽  
Vol 846 ◽  
pp. 42-47
Author(s):  
J. Busse ◽  
S. Galindo Torres ◽  
Alexander Scheuermann ◽  
L. Li ◽  
D. Bringemeier

Coal mining raises a number of environmental and operational challenges, including the impact of changing groundwater levels and flow patterns on adjacent aquifer and surface water systems. Therefore it is of paramount importance to fully understand the flow of water and gases in the geological system on all scales. Flow in coal seams takes place on a wide range of scales from large faults and fractures to the micro-structure of a porous matrix intersected by a characteristic cleat network. On the micro-scale these cleats provide the principal source of permeability for fluid and gas flow. Description of the behaviour of the flow within the network is challenging due to the variations in number, sizing, orientation, aperture and connectivity at a given site. This paper presents a methodology to simulate flow and investigate the permeability of fractured media. A profound characterization of the geometry of the cleat network in micrometer resolution can be derived by CT-scans. The structural information is fed into a Lattice Boltzmann Method (LBM) based model that allows the implementation of virtual flow experiments. With the application of suitable hydraulic boundary conditions the full permeability tensor can be calculated in 3D.


1998 ◽  
Vol 15 (1) ◽  
pp. 111-117 ◽  
Author(s):  
David Valls–Gabaud

AbstractWe briefly review three main applications of Hα surveys in cosmology, namely: (1) the diffuse Hα emission as a tracer of the free–free foreground that contaminates the fluctuations in the cosmic microwave background radiation; (2) the Hα emission from galaxies as a measure of the formation rate of massive stars, both at low and high redshift; and (3) the diffuse Hα emission from ionised clouds as a constraint on the local ionising background radiation.


2019 ◽  
Vol 625 ◽  
pp. A111 ◽  
Author(s):  
Andrew Butler ◽  
Minh Huynh ◽  
Anna Kapińska ◽  
Ivan Delvecchio ◽  
Vernesa Smolčić ◽  
...  

The evolution of the comoving kinetic luminosity densities (Ωkin) of the radio loud high-excitation radio galaxies (RL HERGs) and the low-excitation radio galaxies (LERGs) in the ultimate XMM extragalactic survey south (XXL-S) field is presented. The wide area and deep radio and optical data of XXL-S have allowed the construction of the radio luminosity functions (RLFs) of the RL HERGs and LERGs across a wide range in radio luminosity out to high redshift (z = 1.3). The LERG RLFs display weak evolution: Φ(z)∝(1 + z)0.67 ± 0.17 in the pure density evolution (PDE) case and Φ(z)∝(1 + z)0.84 ± 0.31 in the pure luminosity evolution (PLE) case. The RL HERG RLFs demonstrate stronger evolution than the LERGs: Φ(z)∝(1 + z)1.81 ± 0.15 for PDE and Φ(z)∝(1 + z)3.19 ± 0.29 for PLE. Using a scaling relation to convert the 1.4 GHz radio luminosities into kinetic luminosities, the evolution of Ωkin was calculated for the RL HERGs and LERGs and compared to the predictions from various simulations. The prediction for the evolution of radio mode feedback in the Semi-Analytic Galaxy Evolution (SAGE) model is consistent with the Ωkin evolution for all XXL-S RL AGN (all RL HERGs and LERGs), indicating that the kinetic luminosities of RL AGN may be able to balance the radiative cooling of the hot phase of the IGM. Simulations that predict the Ωkin evolution of LERG equivalent populations show similar slopes to the XXL-S LERG evolution, suggesting that observations of LERGs are well described by models of SMBHs that slowly accrete hot gas. On the other hand, models of RL HERG equivalent populations differ in their predictions. While LERGs dominate the kinetic luminosity output of RL AGN at all redshifts, the evolution of the RL HERGs in XXL-S is weaker compared to what other studies have found. This implies that radio mode feedback from RL HERGs is more prominent at lower redshifts than was previously thought.


2020 ◽  
Vol 324 ◽  
pp. 01003
Author(s):  
Petar Dalakov ◽  
Erik Neuber ◽  
Jürgen Klier ◽  
Ralf Herzog

A new compact, low-cost, economically competitive and environmentally friendly cryogenic system for cooling a continuous gas flow down to about 30 K is under developing at the ILK Dresden, reported in this paper. The paper shows thermodynamic calculations of cycles on neon and neon-helium mixtures. The assessment of the degree of thermodynamic perfection of the neon cycles in comparison of neon-helium cycles is provided. The use of neon and neon-helium mixture in cryogenic cycles for cryostatting at a temperature level of 27…63 K will increase the thermodynamic efficiency of the cryogenic system and reduce the energy costs of obtaining cold at this temperature level. A technological chain/process, as well as the main economic indicators of the system under development are presented. The availability of such an innovative refrigeration system can be used in a wide range of cryogenic and cooling applications.


Sign in / Sign up

Export Citation Format

Share Document