scholarly journals xB elements strongly activate gene expression in non-lymphoid cells and function synergistically with NF1 elements

1989 ◽  
Vol 17 (20) ◽  
pp. 8197-8206 ◽  
Author(s):  
Lothar Henninghausen ◽  
Priscilla A. Furth ◽  
Chirstoph W. Pittius
2021 ◽  
Vol 26 (1) ◽  
Author(s):  
Emmanuel Odame ◽  
Yuan Chen ◽  
Shuailong Zheng ◽  
Dinghui Dai ◽  
Bismark Kyei ◽  
...  

AbstractmiRNAs are well known to be gene repressors. A newly identified class of miRNAs termed nuclear activating miRNAs (NamiRNAs), transcribed from miRNA loci that exhibit enhancer features, promote gene expression via binding to the promoter and enhancer marker regions of the target genes. Meanwhile, activated enhancers produce endogenous non-coding RNAs (named enhancer RNAs, eRNAs) to activate gene expression. During chromatin looping, transcribed eRNAs interact with NamiRNAs through enhancer-promoter interaction to perform similar functions. Here, we review the functional differences and similarities between eRNAs and NamiRNAs in myogenesis and disease. We also propose models demonstrating their mutual mechanism and function. We conclude that eRNAs are active molecules, transcriptional regulators, and partners of NamiRNAs, rather than mere RNAs produced during enhancer activation.


Blood ◽  
2013 ◽  
Vol 122 (14) ◽  
pp. 2369-2379 ◽  
Author(s):  
Keunwook Lee ◽  
Lindsey Heffington ◽  
Julia Jellusova ◽  
Ki Taek Nam ◽  
Ariel Raybuck ◽  
...  

Key Points Maturation, homeostasis, and function of peripheral B lymphoid cells require Rictor, an essential mTOR complex 2 component. Rictor regulates survival of B cells and their balance of proapoptotic vs antiapoptotic gene expression.


2021 ◽  
Author(s):  
Milca Rachel da Costa Ribeiro Lins ◽  
Laura Araujo da Silva Amorim ◽  
Graciely Gomes Correa ◽  
Bruno Willian Picao ◽  
Matthias Mack ◽  
...  

Our growing knowledge of the diversity of non-coding RNAs in natural systems and our deepening knowledge of RNA folding and function have fomented the rational design of RNA regulators. Based on that knowledge, we designed and implemented a small RNA (sRNA) tool to target bacterial riboswitches and activate gene expression. The synthetic sRNA is suitable for the regulation of gene expression both in cell-free and in cellular systems. It targets riboswitches to promote the antitermination folding regardless the cognate metabolite concentration. Therefore, it prevents transcription termination increasing gene expression up to 103-fold. We successfully used sRNA arrays for multiplex targeting of riboswitches. Finally, we used the synthetic sRNA to engineer an improved riboflavin producer strain. The easiness to design and construct, and the fact that the riboswitch-targeting sRNA works as a single genome copy, make it an attractive tool for engineering industrial metabolite-producing strains.


Cancers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 350
Author(s):  
Julianty Frost ◽  
Mark Frost ◽  
Michael Batie ◽  
Hao Jiang ◽  
Sonia Rocha

Hypoxia—reduction in oxygen availability—plays key roles in both physiological and pathological processes. Given the importance of oxygen for cell and organism viability, mechanisms to sense and respond to hypoxia are in place. A variety of enzymes utilise molecular oxygen, but of particular importance to oxygen sensing are the 2-oxoglutarate (2-OG) dependent dioxygenases (2-OGDs). Of these, Prolyl-hydroxylases have long been recognised to control the levels and function of Hypoxia Inducible Factor (HIF), a master transcriptional regulator in hypoxia, via their hydroxylase activity. However, recent studies are revealing that dioxygenases are involved in almost all aspects of gene regulation, including chromatin organisation, transcription and translation. We highlight the relevance of HIF and 2-OGDs in the control of gene expression in response to hypoxia and their relevance to human biology and health.


Animals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1874
Author(s):  
Alberto Elmi ◽  
Nadia Govoni ◽  
Augusta Zannoni ◽  
Martina Bertocchi ◽  
Chiara Bernardini ◽  
...  

Roe deer are seasonal breeders with a complete yearly testicular cycle. The peak in reproductive activity is recorded during summer, the rutting period, with the highest levels of androgens and testicular weight. Melatonin plays a pivotal role in seasonal breeders by stimulating the hypothalamus–pituitary–gonads axis and acting locally; in different species, its synthesis within testes has been reported. The aim of this study was to evaluate the physiological melatonin pattern within roe deer testes by comparing data obtained from animals sampled during pre- and post-rut periods. Melatonin was quantified in testicular parenchyma, along with the genetic expression of enzymes involved in its local synthesis (AANAT and ASMT) and function (UCP1). Melatonin receptors, MT1-2, were quantified both at protein and gene expression levels. Finally, to assess changes in reproductive hormonal profiles, testicular dehydroepiandrosterone (DHEA) was quantified and used for a correlation analysis. Melatonin and AANAT were detected in all samples, without significant differences between pre- and post-rut periods. Despite DHEA levels confirming testicular involution during the post-rut period, no correlations appeared between such involution and melatonin pathways. This study represents the first report regarding melatonin synthesis in roe deer testes, opening the way for future prospective studies in the physiology of this species.


Author(s):  
Fuyan Wang ◽  
Anita Ellen Qualls ◽  
Laia Marques-Fernandez ◽  
Francesco Colucci

AbstractTissues are the new frontier of discoveries in immunology. Cells of the immune system are an integral part of tissue physiology and immunity. Determining how immune cells inhabit, housekeep, and defend gut, lung, brain, liver, uterus, and other organs helps revealing the intimate details of tissue physiology and may offer new therapeutic targets to treat pathologies. The uterine microenvironment modulates the development and function of innate lymphoid cells [ILC, largely represented by natural killer (NK) cells], macrophages, T cells, and dendritic cells. These immune cells, in turn, contribute to tissue homeostasis. Regulated by ovarian hormones, the human uterine mucosa (endometrium) undergoes ~400 monthly cycles of breakdown and regeneration from menarche to menopause, with its fibroblasts, glands, blood vessels, and immune cells remodeling the tissue into the transient decidua. Even more transformative changes occur upon blastocyst implantation. Before the placenta is formed, the endometrial glands feed the embryo by histiotrophic nutrition while the uterine spiral arteries are stripped of their endothelial layer and smooth muscle actin. This arterial remodeling is carried out by invading fetal trophoblast and maternal immune cells, chiefly uterine NK (uNK) cells, which also assist fetal growth. The transformed arteries no longer respond to maternal stimuli and meet the increasing demands of the growing fetus. This review focuses on how the everchanging uterine microenvironment affects uNK cells and how uNK cells regulate homeostasis of the decidua, placenta development, and fetal growth. Determining these pathways will help understand the causes of major pregnancy complications.


2021 ◽  
Vol 7 (3) ◽  
pp. 42
Author(s):  
Victoria Mamontova ◽  
Barbara Trifault ◽  
Lea Boten ◽  
Kaspar Burger

Gene expression is an essential process for cellular growth, proliferation, and differentiation. The transcription of protein-coding genes and non-coding loci depends on RNA polymerases. Interestingly, numerous loci encode long non-coding (lnc)RNA transcripts that are transcribed by RNA polymerase II (RNAPII) and fine-tune the RNA metabolism. The nucleolus is a prime example of how different lncRNA species concomitantly regulate gene expression by facilitating the production and processing of ribosomal (r)RNA for ribosome biogenesis. Here, we summarise the current findings on how RNAPII influences nucleolar structure and function. We describe how RNAPII-dependent lncRNA can both promote nucleolar integrity and inhibit ribosomal (r)RNA synthesis by modulating the availability of rRNA synthesis factors in trans. Surprisingly, some lncRNA transcripts can directly originate from nucleolar loci and function in cis. The nucleolar intergenic spacer (IGS), for example, encodes nucleolar transcripts that counteract spurious rRNA synthesis in unperturbed cells. In response to DNA damage, RNAPII-dependent lncRNA originates directly at broken ribosomal (r)DNA loci and is processed into small ncRNA, possibly to modulate DNA repair. Thus, lncRNA-mediated regulation of nucleolar biology occurs by several modes of action and is more direct than anticipated, pointing to an intimate crosstalk of RNA metabolic events.


Sign in / Sign up

Export Citation Format

Share Document