scholarly journals Programmed genome rearrangements in Oxytricha produce transcriptionally active extrachromosomal circular DNA

2019 ◽  
Vol 47 (18) ◽  
pp. 9741-9760 ◽  
Author(s):  
V Talya Yerlici ◽  
Michael W Lu ◽  
Carla R Hoge ◽  
Richard V Miller ◽  
Rafik Neme ◽  
...  

Abstract Extrachromosomal circular DNA (eccDNA) is both a driver of eukaryotic genome instability and a product of programmed genome rearrangements, but its extent had not been surveyed in Oxytricha, a ciliate with elaborate DNA elimination and translocation during development. Here, we captured rearrangement-specific circular DNA molecules across the genome to gain insight into its processes of programmed genome rearrangement. We recovered thousands of circularly excised Tc1/mariner-type transposable elements and high confidence non-repetitive germline-limited loci. We verified their bona fide circular topology using circular DNA deep-sequencing, 2D gel electrophoresis and inverse polymerase chain reaction. In contrast to the precise circular excision of transposable elements, we report widespread heterogeneity in the circular excision of non-repetitive germline-limited loci. We also demonstrate that circular DNAs are transcribed in Oxytricha, producing rearrangement-specific long non-coding RNAs. The programmed formation of thousands of eccDNA molecules makes Oxytricha a model system for studying nucleic acid topology. It also suggests involvement of eccDNA in programmed genome rearrangement.

eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Julien Bischerour ◽  
Simran Bhullar ◽  
Cyril Denby Wilkes ◽  
Vinciane Régnier ◽  
Nathalie Mathy ◽  
...  

The domestication of transposable elements has repeatedly occurred during evolution and domesticated transposases have often been implicated in programmed genome rearrangements, as remarkably illustrated in ciliates. In Paramecium, PiggyMac (Pgm), a domesticated PiggyBac transposase, carries out developmentally programmed DNA elimination, including the precise excision of tens of thousands of gene-interrupting germline Internal Eliminated Sequences (IESs). Here, we report the discovery of five groups of distant Pgm-like proteins (PgmLs), all able to interact with Pgm and essential for its nuclear localization and IES excision genome-wide. Unlike Pgm, PgmLs lack a conserved catalytic site, suggesting that they rather have an architectural function within a multi-component excision complex embedding Pgm. PgmL depletion can increase erroneous targeting of residual Pgm-mediated DNA cleavage, indicating that PgmLs contribute to accurately position the complex on IES ends. DNA rearrangements in Paramecium constitute a rare example of a biological process jointly managed by six distinct domesticated transposases.


2016 ◽  
Vol 6 (6) ◽  
pp. e1240748 ◽  
Author(s):  
Tobias Mourier

2019 ◽  
Author(s):  
Virginia Valori ◽  
Katalin Tus ◽  
Christina Laukaitis ◽  
David T. Harris ◽  
Lauren LeBeau ◽  
...  

AbstractEpigenetic silencing, including the formation of heterochromatin, silent chromosome territories, and repressed gene promoters, acts to stabilize patterns of gene regulation and the physical structure of the genome. Reduction of epigenetic silencing can result in genome rearrangements, particularly at intrinsically unstable regions of the genome such as transposons, satellite repeats, and repetitive gene clusters including the rRNA gene clusters (rDNA). It is thus expected that mutational or environmental conditions that compromise heterochromatin function might cause genome instability, and diseases associated with decreased epigenetic stability might exhibit genome changes as part of their etiology. We find support of this hypothesis in invasive ductal breast carcinoma, in which reduced epigenetic silencing has been previously described, by using a facile method to quantify rDNA copy number in biopsied breast tumors and pair-matched healthy tissue. We found that rDNA and satellite DNA sequences had significant copy number variation – both losses and gains of copies – compared to healthy tissue, arguing that these genome rearrangements are common in developing breast cancer. Thus, any proposed etiology onset or progression of breast cancer should consider alterations to the epigenome, but must also accommodate concomitant changes to genome sequence at heterochromatic loci.Authors’ StatementOne of the common hallmarks of cancer is genome instability, including hypermutation and changes to chromosome structure. Using tumor tissues obtained from women with invasive ductal carcinoma, we find that a sensitive area of the genome – the ribosomal DNA gene repeat cluster – shows hypervariability in copy number. The patterns we observe as not consistent with an adaptive loss leading to increased tumor growth, but rather we conclude that copy number variation at repeat DNA is a general consequence of reduced heterochromatin function in cancer progression.


Cells ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 625
Author(s):  
Valeria Cavaliere ◽  
Giovanna Lattanzi ◽  
Davide Andrenacci

Transposable elements (TEs) are mobile genomic sequences that are normally repressed to avoid proliferation and genome instability. Gene silencing mechanisms repress TEs by RNA degradation or heterochromatin formation. Heterochromatin maintenance is therefore important to keep TEs silent. Loss of heterochromatic domains has been linked to lamin mutations, which have also been associated with derepression of TEs. In fact, lamins are structural components of the nuclear lamina (NL), which is considered a pivotal structure in the maintenance of heterochromatin domains at the nuclear periphery in a silent state. Here, we show that a lethal phenotype associated with Lamin loss-of-function mutations is influenced by Drosophila gypsy retrotransposons located in euchromatic regions, suggesting that NL dysfunction has also effects on active TEs located in euchromatic loci. In fact, expression analysis of different long terminal repeat (LTR) retrotransposons and of one non-LTR retrotransposon located near active genes shows that Lamin inactivation determines the silencing of euchromatic TEs. Furthermore, we show that the silencing effect on euchromatic TEs spreads to the neighboring genomic regions, with a repressive effect on nearby genes. We propose that NL dysfunction may have opposed regulatory effects on TEs that depend on their localization in active or repressed regions of the genome.


1997 ◽  
Vol 75 (6) ◽  
pp. 733-738 ◽  
Author(s):  
Bruce G Allen ◽  
Jacquelyn E Andrea ◽  
Cindy Sutherland ◽  
Brett O Schönekess ◽  
Michael P Walsh

A full-length cDNA encoding smooth muscle calcyclin (S100A6) was cloned from chicken gizzard, using reverse transcription - polymerase chain reaction techniques. The deduced amino acid sequence contains 92 residues with 12 substitutions and a 2 amino acid C-terminal extension when compared with human calcyclin. Calcyclin was purified from chicken gizzard by Ca2+-dependent hydrophobic chromatography, heat treatment, and anion-exchange chromatography. N-terminal sequencing of two CNBr peptides confirmed its identity as calcyclin. Two isoforms of calcyclin (A and B), which differ with respect to the presence or absence of a C-terminal lysine, were identified and the native protein was shown to exist as noncovalently associated homodimers (AA and BB) and heterodimers (AB). Incubation of purified calcyclin AA with an extract of chicken gizzard did not result in degradation of calcyclin A or appearance of calcyclin B, suggesting that calcyclin B is a bona fide isoform rather than a proteolytic fragment generated during purification. Western blotting of chicken tissues with anti-(gizzard calcyclin) indicated abundant expression of calcyclin in smooth muscle tissues, including esophagus, large intestine, and trachea, with lower levels in lung, heart, kidney, and brain, and none detectable in liver or skeletal muscle.Key words: Ca2+-binding proteins, calcyclin, smooth muscle, cDNA cloning, isoforms.


2020 ◽  
Author(s):  
Richard V. Miller ◽  
Rafik Neme ◽  
Derek M. Clay ◽  
Jananan S. Pathmanathan ◽  
Michael W. Lu ◽  
...  

AbstractThe germline-soma divide is a fundamental distinction in developmental biology, and different genes are expressed in germline and somatic cells throughout metazoan life cycles. Ciliates, a group of microbial eukaryotes, exhibit germline-somatic nuclear dimorphism within a single cell with two different genomes. The ciliate Oxytricha trifallax undergoes massive RNA-guided DNA elimination and genome rearrangement to produce a new somatic macronucleus (MAC) from a copy of the germline micronucleus (MIC). This process eliminates noncoding DNA sequences that interrupt genes and also deletes hundreds of germline-limited open reading frames (ORFs) that are transcribed during genome rearrangement. Here, we update the set of transcribed germline-limited ORFs (TGLOs) in O. trifallax. We show that TGLOs tend to be expressed during nuclear development and then are absent from the somatic MAC. We also demonstrate that exposure to synthetic RNA can reprogram TGLO retention in the somatic MAC and that TGLO retention leads to transcription outside the normal developmental program. These data suggest that TGLOs represent a group of developmentally regulated protein coding sequences whose gene expression is terminated by DNA elimination.


2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Iñigo Prada-Luengo ◽  
Anders Krogh ◽  
Lasse Maretty ◽  
Birgitte Regenberg

Abstract Background Circular DNA has recently been identified across different species including human normal and cancerous tissue, but short-read mappers are unable to align many of the reads crossing circle junctions hence limiting their detection from short-read sequencing data. Results Here, we propose a new method, Circle-Map that guides the realignment of partially aligned reads using information from discordantly mapped reads to map the short unaligned portions using a probabilistic model. We compared Circle-Map to similar up-to-date methods for circular DNA and RNA detection and we demonstrate how the approach implemented in Circle-Map dramatically increases sensitivity for detection of circular DNA on both simulated and real data while retaining high precision. Conclusion Circle-Map is an easy-to-use command line tool that implements the required pipeline to accurately detect circular DNA from circle enriched next generation sequencing experiments. Circle-Map is implemented in python3.6 and it is freely available at https://github.com/iprada/Circle-Map.


2019 ◽  
Vol 116 (29) ◽  
pp. 14639-14644 ◽  
Author(s):  
Masatoshi Mutazono ◽  
Tomoko Noto ◽  
Kazufumi Mochizuki

The silencing of repetitive transposable elements (TEs) is ensured by signal amplification of the initial small RNA trigger, which occurs at distinct steps of TE silencing in different eukaryotes. How such a variety of secondary small RNA biogenesis mechanisms has evolved has not been thoroughly elucidated. Ciliated protozoa perform small RNA-directed programmed DNA elimination of thousands of TE-related internal eliminated sequences (IESs) in the newly developed somatic nucleus. In the ciliate Paramecium, secondary small RNAs are produced after the excision of IESs. In this study, we show that in another ciliate, Tetrahymena, secondary small RNAs accumulate at least a few hours before their derived IESs are excised. We also demonstrate that DNA excision is dispensable for their biogenesis in this ciliate. Therefore, unlike in Paramecium, small RNA amplification occurs before IES excision in Tetrahymena. This study reveals the remarkable diversity of secondary small RNA biogenesis mechanisms, even among ciliates with similar DNA elimination processes, and thus raises the possibility that the evolution of TE-targeting small RNA amplification can be traced by investigating the DNA elimination mechanisms of ciliates.


Sign in / Sign up

Export Citation Format

Share Document