scholarly journals The glucocorticoid receptor interferes with progesterone receptor-dependent genomic regulation in breast cancer cells

2019 ◽  
Vol 47 (20) ◽  
pp. 10645-10661 ◽  
Author(s):  
Maria F Ogara ◽  
Santiago A Rodríguez-Seguí ◽  
Melisa Marini ◽  
Ana Silvina Nacht ◽  
Martin Stortz ◽  
...  

Abstract The glucocorticoid and progesterone receptors (GR and PR) are closely related members of the steroid receptor family. Despite sharing similar structural and functional characteristics; the cognate hormones display very distinct physiological responses. In mammary epithelial cells, PR activation is associated with the incidence and progression of breast cancer, whereas the GR is related to growth suppression and differentiation. Despite their pharmacological relevance, only a few studies have compared GR and PR activities in the same system. Using a PR+/GR+ breast cancer cell line, here we report that either glucocorticoid-free or dexamethasone (DEX)-activated GR inhibits progestin-dependent gene expression associated to epithelial-mesenchymal-transition and cell proliferation. When both receptors are activated with their cognate hormones, PR and GR can form part of the same complex according to co-immunoprecipitation, quantitative microscopy and sequential ChIP experiments. Moreover, genome-wide studies in cells treated with either DEX or R5020, revealed the presence of several regions co-bound by both receptors. Surprisingly, GR also binds novel genomic sites in cells treated with R5020 alone. This progestin-induced GR binding was enriched in REL DNA motifs and located close to genes coding for chromatin remodelers. Understanding GR behavior in the context of progestin-dependent breast cancer could provide new targets for tumor therapy.

Tumor Biology ◽  
2015 ◽  
Vol 36 (12) ◽  
pp. 9649-9659 ◽  
Author(s):  
Octavio Galindo-Hernandez ◽  
Cristina Gonzales-Vazquez ◽  
Pedro Cortes-Reynosa ◽  
Emmanuel Reyes-Uribe ◽  
Sonia Chavez-Ocaña ◽  
...  

2015 ◽  
Vol 14s3 ◽  
pp. CIN.S18965 ◽  
Author(s):  
Magdalena A. Cichon ◽  
Celeste M. Nelson ◽  
Derek C. Radisky

Epithelial-mesenchymal transition (EMT) is a physiological program that is activated during cancer cell invasion and metastasis. We show here that EMT-related processes are linked to a broad and conserved program of transcriptional alterations that are influenced by cell contact and adhesion. Using cultured human breast cancer and mouse mammary epithelial cells, we find that reduced cell density, conditions under which cell contact is reduced, leads to reduced expression of genes associated with mammary epithelial cell differentiation and increased expression of genes associated with breast cancer. We further find that treatment of cells with matrix metalloproteinase-3 (MMP-3), an inducer of EMT, interrupts a defined subset of cell contact-regulated genes, including genes encoding a variety of RNA splicing proteins known to regulate the expression of Rac1b, an activated splice isoform of Rac1 known to be a key mediator of MMP-3-induced EMT in breast, lung, and pancreas. These results provide new insights into how MMPs act in cancer progression and how loss of cell-cell interactions is a key step in the earliest stages of cancer development.


Cancers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3415
Author(s):  
Ge Dong ◽  
Gui Ma ◽  
Rui Wu ◽  
Jinming Liu ◽  
Mingcheng Liu ◽  
...  

Breast cancer is a common malignancy, but the understanding of its cellular and molecular mechanisms is limited. ZFHX3, a transcription factor with many homeodomains and zinc fingers, suppresses prostatic carcinogenesis but promotes tumor growth of liver cancer cells. ZFHX3 regulates mammary epithelial cells’ proliferation and differentiation by interacting with estrogen and progesterone receptors, potent breast cancer regulators. However, whether ZFHX3 plays a role in breast carcinogenesis is unknown. Here, we found that ZFHX3 promoted the proliferation and tumor growth of breast cancer cells in culture and nude mice; and higher expression of ZFHX3 in human breast cancer specimens was associated with poorer prognosis. The knockdown of ZFHX3 in ZFHX3-high MCF-7 cells decreased, and ZFHX3 overexpression in ZFHX3-low T-47D cells increased the proportion of breast cancer stem cells (BCSCs) defined by mammosphere formation and the expression of CD44, CD24, and/or aldehyde dehydrogenase 1. Among several transcription factors that have been implicated in BCSCs, MYC and TBX3 were transcriptionally activated by ZFHX3 via promoter binding, as demonstrated by luciferase-reporter and ChIP assays. These findings suggest that ZFHX3 promotes breast cancer cells’ proliferation and tumor growth likely by enhancing BCSC features and upregulating MYC, TBX3, and others.


Sign in / Sign up

Export Citation Format

Share Document