scholarly journals P0726ENDOTHELIAL DYSFUNCTION ASSOCIATED TO ATHEROSCLEROSIS OF KNOCKOUT APOE MICE COULD BE MEDIATED BY VASCULAR FIBROSIS

2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
Ana Asenjo-Bueno ◽  
Elena Alcalde-Estevez ◽  
Patricia Sosa ◽  
Patricia Plaza ◽  
Lucia Serrano-Garcia ◽  
...  

Abstract Background and Aims Patients with chronic kidney disease (CKD) present a high rate of cardiovascular mortality mainly associated with endothelial dysfunction, which causes more cardiovascular events in presence of atherosclerosis. Atherosclerosis is characterized by a significant increase of low density lipoproteins (LDL), reactive oxygen species (ROS) and inflammation. ROS can oxidize LDL generating oxidized-LDL (oxLDL) that promotes the development of cardiovascular pathologies. The aim of this study was to evaluate whether oxLDL induce endothelial dysfunction analysing the involvement of vascular fibrosis. Method The model used for in vivo studies was the Knockout apolipoprotein E (KO-apoE) mice, which resemble human atherosclerosis and shown high levels of cholesterol (LDL) that can be oxidized to oxLDL. In mice, blood pressure was registered before sacrificed them. After that, we measured different parameters as serum cholesterol levels, vascular function by vascular reactivity in mesenteric arteries and vascular fibrosis in aorta by Sirius Red staining and by the protein expression of fibronectin and collagen-I by immunohistochemistry. In order to investigate the mechanism of action of oxLDL, in vitro studios were performed on human smooth muscle cells (SMC) incubated with oxLDL at different times. Fibrosis was evaluated by the expression of TGF- β and extracellular matrix proteins such as fibronectin and collagen-I by Western blot and by immunofluorescence. ROS production was also measured by fluorescence confocal microscopy, using the CellROX Deep Red probe. Results KO-apoE mice shown higher levels of serum cholesterol and blood pressure than WT animals. Moreover, KO-apoE mice showed endothelial dysfunction since their arteries were less relaxed and more contracted. In addition, these mice presented thickening of vascular wall (SMC layer), more fibrosis showing intense Sirius Red staining and less expression of elastin, all compatible with their vascular dysfunction compared to WT mice. Furthermore, aortas from KO-apoE mice showed a slight increase in fibronectin and collagen-I expression assessed by immunohistochemistry. In vivo studies were confirmed in vitro after treating SMC with oxLDL. oxLDL induced fibrosis in SMC by increasing TGF-β, fibronectin and collagen-I protein expressions evaluated by Western blot and immunofluorescence assays. Treatment with oxLDL also increased ROS production, which seem to be responsible of oxLDL-induced fibrosis in human SMC, as it was blocked in the presence of the antioxidant N-Acetyl-cysteine. Conclusion In summary, these results point to endothelial dysfunction associated to atherosclerosis (oxLDL) could be mediated by an increase in the development of vascular fibrosis where ROS could play an important role. Therefore, the endothelial dysfunction typical of CKD patients could impair with more vascular fibrosis when atherosclerosis is also present.

2020 ◽  
Vol 19 (17) ◽  
pp. 2108-2119
Author(s):  
Yang Jin ◽  
Li Lv ◽  
Shu-Xiang Ning ◽  
Ji-Hong Wang ◽  
Rong Xiao

Background: Laryngeal Squamous Cell Carcinoma (LSCC) is a malignant epithelial tumor with poor prognosis and its incidence rate increased recently. rLj-RGD3, a recombinant protein cloned from the buccal gland of Lampetra japonica, contains three RGD motifs that could bind to integrins on the tumor cells. Methods: MTT assay was used to detect the inhibitory rate of viability. Giemsa’s staining assay was used to observe the morphological changes of cells. Hoechst 33258 and TUNEL staining assay, DNA ladder assay were used to examine the apoptotic. Western blot assay was applied to detect the change of the integrin signal pathway. Wound-healing assay, migration, and invasion assay were used to detect the mobility of Hep2 cells. H&E staining assay was used to show the arrangement of the Hep2 cells in the solid tumor tissues. Results: In the present study, rLj-RGD3 was shown to inhibit the viability of LSCC Hep2 cells in vitro by inducing apoptosis with an IC50 of 1.23µM. Western blot showed that the apoptosis of Hep2 cells induced by rLj- RGD3 was dependent on the integrin-FAK-Akt pathway. Wound healing, transwells, and western blot assays in vitro showed that rLj-RGD3 suppressed the migration and invasion of Hep2 cells by integrin-FAKpaxillin/ PLC pathway which could also affect the cytoskeleton arrangement in Hep2 cells. In in vivo studies, rLj-RGD3 inhibited the growth, tumor volume, and weight, as well as disturbed the tissue structure of the solid tumors in xenograft models of BALB/c nude mice without reducing their body weights. Conclusion: hese results suggested that rLj-RGD3 is an effective and safe suppressor on the growth and metastasis of LSCC Hep2 cells from both in vitro and in vivo experiments. rLj-RGD3 might be expected to become a novel anti-tumor drug to treat LSCC patients in the near future.


2021 ◽  
Author(s):  
Jing Liu ◽  
Pin Lv ◽  
Xiang Rao ◽  
Jiajia Wang

Abstract PurposeIntestinal fibrosis is an incurable digestive disease accompanied by stricture formation, and it has an increasing incidence in recent years. Periplaneta americana is one of the medicinal insects with a long history. There are few reports on the effect of intestinal fibrosis. This study aims to evaluate the inhibitory effect of PA treatment on intestinal fibrosis. MethodsTNBS was used to establish intestinal fibrosis model by enema in BALB/c mice. The mice were treated with PA (50, 100, 200 mg/kg body weight) and 5-aminosalicylic acid (5-ASA) (40mg/kg) by gavage once a day for 6 weeks. At the end of the last week, the mice were sacrificed. Colon samples were collected for H&E and Masson staining. The mRNA and protein expression of α-smooth muscle actin (α-SMA), collagen I and the transforming growth factor-β (TGF-β) / Smad signaling pathway were conducted by real-time PCR and western blot analysis. In vitro, TGF-β1 was used to induce intestinal fibrosis at human colon fibroblasts (CCD-18Co). And using real-time PCR and western blot methods to detect the expression of α-SMA and collagen I. ResultsPA inhibited the expression of α-SMA and collagen I in vivo and in vitro. But the difference was that PA inhibited the TGF-β/Smad signaling pathway in vivo, and the same results had not been obtained in vitro. Conclusion: PA may attenuate intestinal fibrosis by inhibiting TGF-β/Smad signaling pathway, but more experiments were needed to prove it in vitro. ConclusionsPA has potential pharmacological effects in inhibiting intestinal fibrosis, and the TGF-β/Smad signaling pathway seemed promising.


Nano Energy ◽  
2016 ◽  
Vol 22 ◽  
pp. 453-460 ◽  
Author(s):  
Xiaoliang Cheng ◽  
Xiang Xue ◽  
Ye Ma ◽  
Mengdi Han ◽  
Wei Zhang ◽  
...  

2015 ◽  
Vol 6 (2) ◽  
pp. 501-512 ◽  
Author(s):  
Liliya Vinarova ◽  
Zahari Vinarov ◽  
Vasil Atanasov ◽  
Ivayla Pantcheva ◽  
Slavka Tcholakova ◽  
...  

Quillaja saponariaandSapindus trifoliatusextracts decrease cholesterol bioaccessibility duringin vitrodigestion and lower serum cholesterol in mice.


2021 ◽  
Vol 22 (22) ◽  
pp. 12277
Author(s):  
En-Shao Liu ◽  
Nai-Ching Chen ◽  
Tzu-Ming Jao ◽  
Chien-Liang Chen

Medial vascular calcification has emerged as a key factor contributing to cardiovascular mortality in patients with chronic kidney disease (CKD). Vascular smooth muscle cells (VSMCs) with osteogenic transdifferentiation play a role in vascular calcification. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitors reduce reactive oxygen species (ROS) production and calcified-medium–induced calcification of VSMCs. This study investigates the effects of dextromethorphan (DXM), an NADPH oxidase inhibitor, on vascular calcification. We used in vitro and in vivo studies to evaluate the effect of DXM on artery changes in the presence of hyperphosphatemia. The anti-vascular calcification effect of DXM was tested in adenine-fed Wistar rats. High-phosphate medium induced ROS production and calcification of VSMCs. DXM significantly attenuated the increase in ROS production, the decrease in ATP, and mitochondria membrane potential during the calcified-medium–induced VSMC calcification process (p < 0.05). The protective effect of DXM in calcified-medium–induced VSMC calcification was not further increased by NADPH oxidase inhibitors, indicating that NADPH oxidase mediates the effect of DXM. Furthermore, DXM decreased aortic calcification in Wistar rats with CKD. Our results suggest that treatment with DXM can attenuate vascular oxidative stress and ameliorate vascular calcification.


2020 ◽  
Vol 13 ◽  
Author(s):  
A. Sureda ◽  
M. Monserrat-Mesquida ◽  
S. Pinya ◽  
P. Ferriol ◽  
S. Tejada

Background:: Hypertension is a high prevalent chronic disease worldwide and a major cardiovascular risk factor. Oleanolic acid (3β-hydroxy-olea-12-en-28-oic acid) is a wide distributed bioactive pentacyclic triterpenoid with diverse biological activities such as anti-inflammatory, hepaprotective anti-diabetic or anti-hypertensive. Objective:: The aim of this study was to review and highlight the available data about antihypertensive activity of oleanolic acid and the described mechanisms of action. Method:: Extensive searches were made in the available literature on oleanolic acid and the data investigating its antihypertensive effects were analysed. Results:: Most of research has been performed on animal models of hypertension, ex vivo studies with aortic ring and some in vitro tests with cell cultures, whereas clinical trials are still lacking. Treatment of hypertensive animals with oleanolic acid significantly ameliorated the rise in the systolic blood pressure. In addition, the hypotensive effects of oleanolic acid are also related to a potent diuretic-natriuretic activity and nephroprotection. In vitro studies have characterized the participation of various signalling pathways that modulate the release of vasodilation mediators. Conclusion:: In vitro and in vivo studies suggest that oleanolic acid effectively reduce blood pressure and could be an interesting co-adjuvant to conventional treatment of hypertension.


1984 ◽  
Vol 247 (6) ◽  
pp. F975-F981 ◽  
Author(s):  
R. A. Stahl ◽  
U. Helmchen ◽  
M. Paravicini ◽  
L. J. Ritter ◽  
P. Schollmeyer

In vitro prostaglandin (PG) and thromboxane B2 (TXB2) formation by isolated glomeruli from normotensive (N) and two-kidney, one-clip hypertensive (2K,1C) rats was determined. When calculated on the basis of glomerular protein content, PGE2, 6-keto-PGF1 alpha and TXB2 production of glomeruli from clipped kidneys was significantly greater than PG and TXB2 formation of glomeruli from the untouched kidneys. When PG and TXB2 formation was calculated per amount of glomeruli, only PGE2 formation was found to be significantly greater in clipped kidneys. No severe damage of glomerular structure was found in the kidneys when studied by light microscopy. In additional in vivo studies, the effect of the cyclooxygenase inhibitor indomethacin on blood pressure and glomerular filtration rate (GFR) was evaluated. Following indomethacin GFR in 7 of 13 clipped kidneys of 2K,1C rats decreased from 363 +/- 77 to 188 +/- 51 microliter/100 g body wt, whereas six kidneys developed anuria. No effect of cyclooxygenase inhibition on GFR was found in N rats and in untouched kidneys of 2K,1C rats. Mean arterial blood pressure in 2K,1C hypertension fell significantly, from 158 +/- 10 to 135 +/- 7 mmHg, after cyclooxygenase inhibition. No effect was seen in N rats. The data suggest that increased glomerular PG formation in the clipped kidneys of 2K,1C rats is involved in the pathogenesis of hypertension in this animal model.


2010 ◽  
Vol 298 (3) ◽  
pp. G395-G401 ◽  
Author(s):  
Geetu Raheja ◽  
Varsha Singh ◽  
Ke Ma ◽  
Redouane Boumendjel ◽  
Alip Borthakur ◽  
...  

Clinical efficacy of probiotics in treating various forms of diarrhea has been clearly established. However, mechanisms underlying antidiarrheal effects of probiotics are not completely defined. Diarrhea is caused either by decreased absorption or increased secretion of electrolytes and solutes in the intestine. In this regard, the electroneutral absorption of two major electrolytes, Na+ and Cl−, occurs mainly through the coupled operation of Na+/H+ exchangers and Cl−/OH− exchangers. Previous studies from our laboratory have shown that Lactobacillus acidophilus (LA) acutely stimulated Cl−/OH− exchange activity via an increase in the surface levels of the apical anion exchanger SLC26A3 (DRA). However, whether probiotics influence SLC26A3 expression and promoter activity has not been examined. The present studies were, therefore, undertaken to investigate the long-term effects of LA on SLC26A3 expression and promoter activity. Treatment of Caco-2 cells with LA for 6–24 h resulted in a significant increase in Cl−/OH− exchange activity. DRA mRNA levels were also significantly elevated in response to LA treatment starting as early as 8 h. Additionally, the promoter activity of DRA was increased by more than twofold following 8 h LA treatment of Caco-2 cells. Similar to the in vitro studies, in vivo studies using mice gavaged with LA also showed significantly increased DRA mRNA (∼4-fold) and protein expression in the colonic regions as assessed by Western blot analysis and immunofluorescence. In conclusion, increase in DRA promoter activity and expression may contribute to the upregulation of intestinal electrolyte absorption and might underlie the potential antidiarrheal effects of LA.


Biomedicines ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 274 ◽  
Author(s):  
Esteban Colombo ◽  
Antonio Signore ◽  
Stefano Aicardi ◽  
Angelina Zekiy ◽  
Anatoliy Utyuzh ◽  
...  

Background: Under physiological conditions, endothelial cells are the main regulator of arterial tone homeostasis and vascular growth, sensing and transducing signals between tissue and blood. Disease risk factors can lead to their unbalanced homeostasis, known as endothelial dysfunction. Red and near-infrared light can interact with animal cells and modulate their metabolism upon interaction with mitochondria’s cytochromes, which leads to increased oxygen consumption, ATP production and ROS, as well as to regulate NO release and intracellular Ca2+ concentration. This medical subject is known as photobiomodulation (PBM). We present a review of the literature on the in vitro and in vivo effects of PBM on endothelial dysfunction. Methods: A search strategy was developed consistent with the PRISMA statement. The PubMed, Scopus, Cochrane, and Scholar electronic databases were consulted to search for in vitro and in vivo studies. Results: Fifty out of >12,000 articles were selected. Conclusions: The PBM can modulate endothelial dysfunction, improving inflammation, angiogenesis, and vasodilatation. Among the studies, 808 nm and 18 J (0.2 W, 2.05 cm2) intracoronary irradiation can prevent restenosis as well as 645 nm and 20 J (0.25 W, 2 cm2) can stimulate angiogenesis. PBM can also support hypertension cure. However, more extensive randomised controlled trials are necessary.


2021 ◽  
Vol 14 (1) ◽  
pp. 19-25
Author(s):  
Yao-Wen Song ◽  
◽  
Xu Li ◽  
Li Wang ◽  
Zhi-Qiang Pan ◽  
...  

AIM: To investigate the effects of a selective inhibitor of Rho-associated kinase (ROCK), Y-27632, on inbred Wuzhishan porcine corneal endothelial cells (PCECs) in vitro and in vivo studies. METHODS: Primary PCECs were trypsinized from Wuzhishan miniature porcine corneal tissues. The optimal concentration of Y-27632 on PCECs was determined through MTT and 5-ethynyl-2’-deoxyuridine (EdU)-labeling assays. Seven New Zealand rabbits were used as a corneal endothelial dysfunction model, and a PCECs suspension supplemented with Y-27632 was injected into the anterior chamber of the rabbits. The progression of rabbit corneal opacity and edema were observed by slit lamp examination. The rabbits were sacrificed, and rabbit globes were enucleated for trypan blue-alizarin red staining, hematoxylin-eosin staining, and immunofluorescence analysis. RESULTS: Administration of 100 μmol/L Y-27632 facilitated PCECs’ proliferation obviously. The rabbit corneas injected with PCECs suspension and 100 μmol/L Y-27632 were restored to transparency significantly after 14d. CONCLUSION: The 100 μmol/L Y-27632 treatment improves PCECs’ proliferation significantly. And our results suggest that Y-27632 and PCECs can be used to treat corneal endothelial dysfunction.


Sign in / Sign up

Export Citation Format

Share Document