CSIG-16. PATHWAY-BASED APPROACH REVEALS DIFFERENTIAL SENSITIVITY OF GLIOBLASTOMA TO E2F1 INHIBITION

2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi36-vi36
Author(s):  
Alvaro Alvarado ◽  
Kaleab Tessema ◽  
Sree Muthukrishnan ◽  
Riki Kawaguchi ◽  
Vivek Swarup ◽  
...  

Abstract The great phenotypic heterogeneity of glioblastoma (GBM) – both inter and intratumorally – has hindered therapeutic efforts. While genome-based molecular subtyping has revealed that GBMs may be parsed into several molecularly distinct categories, this insight has not translated to a significant extension of patient survival. We hypothesize that, rather than gene expression as a whole, analysis of targetable pathways could yield important insights into the development of novel classification schemes and, most importantly, to targeted therapeutics. Here, we interrogated tumor samples using a pathway-based approach to resolve tumoral heterogeneity. The Cancer Genome Atlas samples were clustered using gene set enrichment analysis and the resulting 3 clusters were informative of patient survival and only modestly overlapped with prior molecular classification. We validated our approach by generating gene lists from common elements found in the top contributing genesets for a particular cluster and testing the top targets in appropriate gliomasphere patient-derived lines. Samples enriched for cell cycle related genesets showed a decrease in sphere formation capacity, proliferation and in vivo tumor growth when E2F1, our top target, was silenced. Consistent with our theory, E2F1 knockdown had little or no effect on the growth of the non-enriched lines, despite their ability to proliferate in vitro and in vivo. We similarly analyzed single cell RNAseq datasets and correlated cell cycle and stemness signatures with the gene lists we generated as well as with molecular states and cell specific signatures. Finally, we confirmed a connection between E2F1 and cellular inhibitor of PP2A (CIP2A) in a cluster of samples. Loss of function studies reveals a diminished capacity for DNA damage regulation in E2F1 activated samples. Our studies relate inter- and intratumoral heterogeneity to critical cellular pathways dysregulated in GBM, with the ultimate goal of establishing a pipeline for patient- and tumor-specific precision medicine.

2021 ◽  
Vol 3 (Supplement_2) ◽  
pp. ii12-ii12
Author(s):  
Alvaro Alvarado ◽  
Kaleab Tessema ◽  
Sree Muthukrishnan ◽  
Riki Kawaguchi ◽  
Vivek Swarup ◽  
...  

Abstract The great phenotypic heterogeneity of glioblastoma (GBM) – both inter and intratumorally – has hindered therapeutic efforts. While genome-based molecular subtyping has revealed that GBMs may be parsed into several molecularly distinct categories, this insight has not translated to a significant extension of patient survival. We hypothesize that, rather than gene expression as a whole, analysis of targetable pathways could yield important insights into the development of novel classification schemes and, most importantly, to targeted therapeutics. Here, we interrogated tumor samples using a pathway-based approach to resolve tumoral heterogeneity. The Cancer Genome Atlas samples were clustered using gene set enrichment analysis and the resulting 3 clusters were informative of patient survival and only modestly overlapped with prior molecular classification. We validated our approach by generating gene lists from common elements found in the top contributing genesets for a particular cluster and testing the top targets in appropriate gliomasphere patient-derived lines. Samples enriched for cell cycle related genesets showed a decrease in sphere formation capacity, proliferation and in vivo tumor growth when E2F1, our top target, was silenced. Consistent with our theory, E2F1 knockdown had little or no effect on the growth of the non-enriched lines, despite their ability to proliferate in vitro and in vivo. We similarly analyzed single cell RNAseq datasets and correlated cell cycle and stemness signatures with the gene lists we generated, concluding that cells with stem cell signatures were depleted of E2F1 and its downstream targets. Finally, we confirmed a connection between E2F1 and cellular inhibitor of PP2A (CIP2A) in a cluster of samples. Loss of function studies reveal a diminished capacity for DNA damage regulation in E2F1 activated samples. Our studies relate inter- and intratumoral heterogeneity to critical cellular pathways dysregulated in GBM, with the ultimate goal of establishing a pipeline for patient- and tumor-specific precision medicine.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii28-ii28
Author(s):  
Alvaro Alvarado ◽  
Kaleab Tessema ◽  
Kunal Patel ◽  
Riki Kawaguchi ◽  
Richard Everson ◽  
...  

Abstract Despite efforts to gain a deeper understanding of its molecular architecture, glioblastoma (GBM) remains uniformly fatal. While genome-based molecular subtyping has revealed that GBMs may be parsed into several molecularly distinct categories, this insight has yielded little progress towards extending patient survival. In particular, the great phenotypic heterogeneity of GBM – both inter and intratumorally – has hindered therapeutic efforts. To this end, we interrogated tumor samples using a pathway-based approach to resolve tumoral heterogeneity. Gene set enrichment analysis (GSEA) was applied to gene expression data and used to provide an overview of each sample that can be compared to other samples by generating sample clusters based on overall patterns of enrichment. The Cancer Genome Atlas (TCGA) samples were clustered using the canonical and oncogenic signatures and in both cases the clustering was distinct from the molecular subtype previously reported and clusters were informative of patient survival. We also analyzed single cell RNA sequencing datasets and uniformly found two clusters of cells enriched for cell cycle regulation and survival pathways. We have validated our approach by generating gene lists from common elements found in the top contributing genesets for a particular cluster and testing the top targets in appropriate gliomasphere patient-derived lines. Samples enriched for cell cycle related genesets showed a decrease in sphere formation capacity when E2F1, out top target, was silenced and when treated with fulvestrant and calcitriol, which were identified as potential drugs targeting this genelist. Conversely, no changes were observed in samples not enriched for this gene list. Finally, we interrogated spatial heterogeneity and found higher enrichment of the proliferative signature in contrast enhancing compared with non-enhancing regions. Our studies relate inter- and intratumoral heterogeneity to critical cellular pathways dysregulated in GBM, with the ultimate goal of establishing a pipeline for patient- and tumor-specific precision medicine.


2021 ◽  
Author(s):  
Qingqing Hu ◽  
Xiaochu Hu ◽  
Yalei Zhao ◽  
Lingjian Zhang ◽  
Ya Yang ◽  
...  

Abstract Background: Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death worldwide. Shugoshin-like protein 2 (SGOL2) is a centromeric protein that ensures the correct and orderly process of mitosis by protecting and maintaining centripetal adhesions during meiosis and mitosis. However, the role of SGOL2 in cancer is not well understood. Methods: The mRNA and protein levels of SGOL2 and survival analysis were conducted in The Cancer Genome Atlas (TCGA) and further validated in 2 independent cohorts. Differential genes correlated with SGOL2 and mitotic arrest deficient 2 like 1 (MAD2) were obtained using LinkedOmics. Subsequently, loss-of-function and rescue assays were carried out in vitro and in vivo to assess the functions of SGOL2 in hepatic tumorigenisis. Findings: We found that SGOL2 was significantly overexpressed in HCC and predicted unfavorable overall survival in HCC patients. Next, we identified 47 differentially expressed genes positively correlated with both SGOL2 and MAD2 to be mainly involved in the cell cycle. In addition, SGOL2 downregulation suppressed the migration, invasion, proliferation, stemness and EMT of HCC cells and inhibited tumorigenesis in vivo. Furthermore, SGOL2 promoted tumor proliferation by activating MAD2-induced cell cycle dysregulation, which could be reversed by the MAD2 inhibitor M2I-1. We also proved that SGOL2 activated MAD2 by directly binding with MAD2. Conclusions: The results of this study showed that SGOL2 acts as an oncogene in HCC cells by directly activating MAD2 and then dysregulating the cell cycle, thereby providing a potential target for HCC patients in the future.


Author(s):  
Yusha Xiao ◽  
Rahmathullah Mohamed Najeeb ◽  
Dong Ma ◽  
Kang Yang ◽  
Qiu Zhong ◽  
...  

Abstract Background Hepatocellular carcinoma (HCC) still remains a dominating medical challenge in early diagnosis and clinical therapy. Centromere protein M (CENPM) has been proved to be over-expressed in HCC tissues, but carcinogenic mechanism of CENPM contributing to liver cancer is poorly understood. Methods In this study, we first explored mRNA and protein levels of CENPM in HCC samples, matching adjacent non-tumor tissues and six hepatoma cell lines by polymerase chain reaction (PCR), western blotting and immunohistochemistry (IHC). Clinical data of HCC patients downloaded from The Cancer Genome Atlas (TCGA) were also analyzed. The character of CENPM concerned with HCC progression through several functional experimentations in vitro and in vivo was researched. Bioinformatics was carried out to further discover biological functions of CENPM. Results CENPM was positively up-regulated in HCC and connected with a poor prognosis. Silencing CENPM repressed cell proliferation in vivo and in vitro, and knock-down CENPM inhibited cell migration and invasion. Additionally, depletion of CENPM can promote cell apoptosis and arrested cell cycle. Furthermore, single-gene gene set enrichment analysis (GSEA) analysis indicated that CENPM was linked to the P53 signaling pathway and cell cycle pathway, and our research supported this prediction. Finally, we also found that miR-1270 was a negative regulator and participated in post-transcriptional regulation of CENPM, and hepatitis B virus X protein (HBx) can promote hepatocellular carcinoma by suppressing miR1270. Conclusion CENPM was closely associated with HCC progression and it could be considered as a new possible biomarker along with a therapeutic target for HCC.


2021 ◽  
Vol 12 ◽  
Author(s):  
Peng Zhang ◽  
Qian Yang

SHMT2 was overexpressed in many tumors, however, the role of SHMT2 in bladder cancer (BLCA) remains unclear. We first analyzed the expression pattern of SHMT2 in BLCA using the TNMplot, Oncomine, the Cancer Genome Atlas (TCGA), and the Gene Expression Omnibus (GEO) databases. Next, the association between SHMT2 expression and overall survival (OS)/disease-free survival (DFS) in BLCA patients were analyzed using TCGA and PrognoScan database. The correlation between SHMT2 expression and clinicopathology was determined using TCGA database. Furthermore, the genes co-expressed with SHMT2 and their underlying molecular function in BLCA were explored based on the Oncomine database, Metascape and gene set enrichment analysis (GSEA). Finally, the effects of SHMT2 on cell proliferation, cell cycle, and apoptosis were assessed using in vitro experiments. As a results, SHMT2 was significantly overexpressed in BLCA tissues and cells compared to normal bladder tissues and cells. A high SHMT2 expression predicts a poor OS of BLCA patients. In addition, SHMT2 expression was higher in patients with a high tumor grade and in those who were older than 60 years. However, the expression of SHMT2 was not correlated with gender, tumor stage, lymph node stage, and distant metastasis stage. Finally, overexpression of SHMT2 promoted BLCA cell proliferation and suppressed apoptosis, the silencing of SHMT2 significantly inhibited BLCA cell proliferation by impairing the cell cycle, and promoting apoptosis. SHMT2 mediates BLCA cells growth by regulating STAT3 signaling. In summary, SHMT2 regulates the proliferation, cell cycle and apoptosis of BLCA cells, and may act as a candidate therapeutic target for BLCA.


2021 ◽  
Vol 12 (5) ◽  
Author(s):  
Xi Chen ◽  
Weijie Ma ◽  
Ye Yao ◽  
Qi Zhang ◽  
Jinghua Li ◽  
...  

AbstractSerum deprivation-response protein (SDPR), a phosphatidylserine-binding protein, which is known to have a promising role in caveolar biogenesis and morphology. However, its function in hepatocellular carcinoma (HCC) was still largely unknown. In this study, we discussed the characterization and identification of SDPR, and to present it as a novel apoptosis candidate in the incidence of HCC. We identified 81 HCC cases with lower SDPR expression in the tumor tissues with the help of qRT-PCR assay, and lower SDPR expression was potentially associated with poor prognostication. The phenotypic assays revealed that cell proliferation, invasion, and migration were profoundly connected with SDPR, both in vivo and in vitro. The data obtained from the gene set enrichment analysis (GSEA) carried out on the liver hepatocellular carcinoma (LIHC), and also The Cancer Genome Atlas (TCGA) findings indicated that SDPR was involved in apoptosis and flow cytometry experiments further confirmed this. Furthermore, we identified the interaction between SDPR and apoptosis signal-regulating kinase 1 (ASK1), which facilitated the ASK1 N-terminus-mediated dimerization and increased ASK1-mediated signaling, thereby activating the JNK/p38 mitogen-activated protein kinases (MAPKs) and finally enhanced cell apoptosis. Overall, this work identified SDPR as a tumor suppressor, because it promoted apoptosis by activating ASK1-JNK/p38 MAPK pathways in HCC.


2021 ◽  
Vol 11 ◽  
Author(s):  
Xiaolong Du ◽  
Chen Zhang ◽  
Chuanzheng Yin ◽  
Wenjie Wang ◽  
Xueke Yan ◽  
...  

Molecular mechanisms underlying the tumorigenesis of a highly malignant cancer, cholangiocarcinoma (CCA), are still obscure. In our study, the CCA expression profile data were acquired from The Cancer Genome Atlas (TCGA) database, and differentially expressed genes (DEGs) in the TCGA-Cholangiocarcinoma (TCGA-CHOL) data set were utilized to construct a co-expression network via weighted gene co-expression network analysis (WGCNA). The blue gene module associated with the histopathologic grade of CCA was screened. Then, five candidate hub genes were screened by combining the co-expression network with protein–protein interaction (PPI) network. After progression and survival analyses, bloom syndrome helicase (BLM) was ultimately identified as a real hub gene. Moreover, the receiver operating characteristic (ROC) curve analysis suggested that BLM had a favorable diagnostic and predictive recurrence value for CCA. The gene set enrichment analysis (GSEA) results for a single hub gene revealed the importance of cell cycle-related pathways in the CCA progression and prognosis. Furthermore, we detected the BLM expression in vitro, and the results demonstrated that the expression level of BLM was much higher in the CCA tissues and cells relative to adjacent non-tumor samples and normal bile duct epithelial cells. Additionally, after further silencing the BLM expression by small interfering RNA (siRNA), the proliferation and migration ability of CCA cells were all inhibited, and the cell cycle was arrested. Altogether, a real hub gene (BLM) and cell cycle-related pathways were identified in the present study, and the gene BLM may be involved in the CCA progression and could act as a reliable biomarker for potential diagnosis and prognostic evaluation.


2021 ◽  
Author(s):  
Linyan Chai ◽  
Zhengguo Qiu ◽  
Xiaozhi Zhang ◽  
Rong Li ◽  
Yao Wang ◽  
...  

Abstract Background: Loss of VHL always results in the loss of PBRM1 and causes aggressive clear cell renal cell carcinoma. However, VHL mutation was not significantly associated with worse survival, and PBRM1 modulate the tumor behavior is not clear. Thus, exploration of key molecules promoting the tumor aggressive is urgent in both VHL and PBRM1 RCC patient.Methods and results: POLR2A was screened out by analyzing The Cancer Genome Atlas mutation data. Gene Set Enrichment Analysis results showed that E2F, G2M, and mTOR1 pathways were all altered in response to POLR2A high expression. Furthermore, In vitro, knockdown of POLR2A in 769-P and 786-O cells resulted in cell growth arrest and cell cycle blockade compared to control cells, the mechanism though decreasing cyclin D1-CDK4 axis. In vivo results were confirmed 786-O cells in which POLR2A expression was silenced, exhibited tumor growth inhibited compared to control group.Conclusions: POLR2A was the key protein after VHL and PBRM1 mutations in RCC, inhibition of POLR2A crippled cell viability and proliferation in vivo and in vitro, We anticipate POLR2A represents a novel candidate for RCC treatment.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Chengwu Xiao ◽  
Wei Zhang ◽  
Meimian Hua ◽  
Huan Chen ◽  
Bin Yang ◽  
...  

Abstract Background The tripartite motif (TRIM) family proteins exhibit oncogenic roles in various cancers. The roles of TRIM27, a member of the TRIM super family, in renal cell carcinoma (RCC) remained unexplored. In the current study, we aimed to investigate the clinical impact and roles of TRIM27 in the development of RCC. Methods The mRNA levels of TRIM27 and Kaplan–Meier survival of RCC were analyzed from The Cancer Genome Atlas database. Real-time PCR and Western blotting were used to measure the mRNA and protein levels of TRIM27 both in vivo and in vitro. siRNA and TRIM27 were exogenously overexpressed in RCC cell lines to manipulate TRIM27 expression. Results We discovered that TRIM27 was elevated in RCC patients, and the expression of TRIM27 was closely correlated with poor prognosis. The loss of function and gain of function results illustrated that TRIM27 promotes cell proliferation and inhibits apoptosis in RCC cell lines. Furthermore, TRIM27 expression was positively associated with NF-κB expression in patients with RCC. Blocking the activity of NF-κB attenuated the TRIM27-mediated enhancement of proliferation and inhibition of apoptosis. TRIM27 directly interacted with Iκbα, an inhibitor of NF-κB, to promote its ubiquitination, and the inhibitory effects of TRIM27 on Iκbα led to NF-κB activation. Conclusions Our results suggest that TRIM27 exhibits an oncogenic role in RCC by regulating NF-κB signaling. TRIM27 serves as a specific prognostic indicator for RCC, and strategies targeting the suppression of TRIM27 function may shed light on future therapeutic approaches.


Author(s):  
Hongli Zhou ◽  
Minyu Zhou ◽  
Yue Hu ◽  
Yanin Limpanon ◽  
Yubin Ma ◽  
...  

AbstractAngiostrongylus cantonensis (AC) can cause severe eosinophilic meningitis or encephalitis in non-permissive hosts accompanied by apoptosis and necroptosis of brain cells. However, the explicit underlying molecular basis of apoptosis and necroptosis upon AC infection has not yet been elucidated. To determine the specific pathways of apoptosis and necroptosis upon AC infection, gene set enrichment analysis (GSEA) and protein–protein interaction (PPI) analysis for gene expression microarray (accession number: GSE159486) of mouse brain infected by AC revealed that TNF-α likely played a central role in the apoptosis and necroptosis in the context of AC infection, which was further confirmed via an in vivo rescue assay after treating with TNF-α inhibitor. The signalling axes involved in apoptosis and necroptosis were investigated via immunoprecipitation and immunoblotting. Immunofluorescence was used to identify the specific cells that underwent apoptosis or necroptosis. The results showed that TNF-α induced apoptosis of astrocytes through the RIP1/FADD/Caspase-8 axis and induced necroptosis of neurons by the RIP3/MLKL signalling pathway. In addition, in vitro assay revealed that TNF-α secretion by microglia increased upon LSA stimulation and caused necroptosis of neurons. The present study provided the first evidence that TNF-α was secreted by microglia stimulated by AC infection, which caused cell death via parallel pathways of astrocyte apoptosis (mediated by the RIP1/FADD/caspase-8 axis) and neuron necroptosis (driven by the RIP3/MLKL complex). Our research comprehensively elucidated the mechanism of cell death after AC infection and provided new insight into targeting TNF-α signalling as a therapeutic strategy for CNS injury.


Sign in / Sign up

Export Citation Format

Share Document