EPID-17. COMPARATIVE EPIDEMIOLOGY OF PRIMARY BRAIN TUMORS AMONG ADOLESCENTS AND YOUNG ADULTS (AYA)

2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi89-vi89
Author(s):  
Nayan Lamba ◽  
Bryan Iorgulescu

Abstract INTRODUCTION We utilized national registry data to evaluate the unique epidemiology of primary adolescent and young adult (AYA) brain tumors according to the WHO2016 classification. METHODS AYA patients (15≤age≤39) presenting between 2004-2017 with a brain tumor were identified by ICD-O-3 coding from the National Cancer Database (comprising >70% of newly-diagnosed cancers in the U.S.), and compared to pediatric and adult populations. Epidemiology and overall survival (estimated by Kaplan-Meier techniques and multivariable Cox regression) were assessed by WHO2016 tumor type. RESULTS 108,705 AYA brain tumor patients were identified (56.9% female), compared to 23,928 pediatric (46.8% female) and 748,272 adult (55.6% female) patients. Among the 69.4% of AYA brain tumors with pathological diagnosis, diffuse gliomas (31.4%), sellar tumors (19.2%), and meningiomas (15.3%) predominated in both sexes. Diffuse glioma (31.4%), sellar (19.2%), cranial nerve (7.3%), and mesenchymal non-meningothelial (4.1%) tumors represented a greater proportion of AYA brain tumors than in either pediatric or adult populations. A majority of all intracranial GCTs (59.2%) and neuronal & mixed neuronal-glial tumors (51.6%) presented during AYA. Although the prevalence of diffuse gliomas was similar between AYAs and adults, AYA gliomas were more likely to be grade 2-3 astrocytomas (38.9% vs 14.3%) and oligodendrogliomas (19.3% vs 4.3%) than in adults. GBMs represented 76.0% of adult diffuse gliomas vs. only 25.7% of AYA diffuse gliomas, but with a similar prevalence of MGMT promoter methylation (40.8% vs 38.4%). Notably, 50.7% of AYA PCNSLs were associated with HIV/AIDS, vs only 7.1% in adults (p< 0.001). CONCLUSIONS The distribution, epidemiology, and survival outcomes of primary brain tumors in the AYA population are distinct from their pediatric and adult counterparts. Notably, AYA infiltrative gliomas were more often of lower grade than adults and AYA PCNSL were far more likely to be associated with HIV/AIDS. Primary brain tumors in AYA patients require specialized management.

2005 ◽  
Vol 53 (8) ◽  
pp. 963-969 ◽  
Author(s):  
Stephen B. Hunter ◽  
Vijay Varma ◽  
Bahig Shehata ◽  
J.D.L. Nolen ◽  
Cynthia Cohen ◽  
...  

Apolipoprotein D (apoD) expression has been shown to correlate both with cell cycle arrest and with prognosis in several types of malignancy, including central nervous system astrocytomas and medulloblastomas. ApoD expression was investigated by real-time quantitative RT-PCR using RNA extracted from 68 formalin-fixed, paraffin-embedded brain specimens. Glyceraldehyde phosphate dehydrogenase was used as an internal control. Quantitation was achieved on all specimens. Sixteen poorly infiltrating WHO grade I glial neoplasms (i.e., pilocytic astrocytomas and gangliogliomas) showed an average 20-fold higher apoD expression level compared with the 20 diffusely infiltrating glial neoplasms (i.e., glioblastoma, anaplastic astrocytoma, oligodendrogliomas; p=0.00004). A small number of exceptions (i.e., two high-expressing glioblastomas and three low-expressing gangliogliomas) were identified. Analyzed as individual tumor groups, poorly infiltrating grade I pilocytic astrocytomas and gangliogliomas differed significantly from each tumor type within the diffusely infiltrating higher-grade category ( p<0.05 for each comparison) but not from each other ( p>0.05). Conversely, each individual tumor type within the diffusely infiltrating category differed significantly from both pilocytic astrocytomas and gangliogliomas ( p<0.05) but did not vary from other infiltrating tumors ( p>0.05). Ependymomas, non-infiltrating grade II neoplasms, expressed levels of apoD similar to or lower than levels expressed by the diffusely infiltrating gliomas. Ten medulloblastomas with survival longer than 3 years averaged slightly higher apoD expression than four fatal medulloblastomas; however, this result was not statistically significant and individual exceptions were notable. In 17 of the medulloblastomas, MIB-1 proliferation rates quantitated by image cytometry did not correlate with apoD expression. In addition, apoD expression was 5-fold higher in the slowly proliferating grade I glial neoplasms compared with non-proliferating normal brain tissue ( p=0.01), suggesting that apoD expression is not simply an inverse measure of proliferation. ApoD expression measured by quantitative RT-PCR may be useful in the differential diagnosis of primary brain tumors, particularly pilocytic astrocytomas and gangliogliomas.


2022 ◽  
Vol 11 ◽  
Author(s):  
Junhong Li ◽  
Huanhuan Fan ◽  
Xingwang Zhou ◽  
Yufan Xiang ◽  
Yanhui Liu

The urokinase-type plasminogen activator(PLAU) and its receptor PLAUR participate in a series of cell physiological activities on the extracellular surface. Abnormal expression of PLAU and PLAUR is associated with tumorigenesis. This study aims to evaluate the prognostic value of PLAU/PLAUR transcription expression in glioma and to explore how they affect the generation and progression of glioma. In this study, online databases are applied, such as Oncomine, GEPIA, CGGA, cBioPortal, and LinkedOmics. Overexpression of PLAU/PLAUR was found to be significantly associated with clinical variables including age, tumor type, WHO grade, histology, IDH-1 mutation, and 1p19q status. PLAU and PLAUR had a high correlation in transcriptional expression levels. High expression of PLAU and PLAUR predicted a poor prognosis in primary glioma and recurrent glioma patients, especially in lower grade gliomas. Cox regression analysis indicated that high expression of PLAU and PLAUR were independent prognostic factors for shorter overall survival in glioma patients. In gene co-expression network analysis PLAU and PLAUR and their co-expression genes were found to be involved in inflammatory activities and tumor-related signaling pathways. In conclusion, PLAU and PLAUR could be promising prognostic biomarkers and potential therapeutic targets of glioma patients.


Author(s):  
K.W. Wang ◽  
E. Kearsley ◽  
N. Falzone ◽  
A. Fleming ◽  
S. Burrow ◽  
...  

Brain tumors are the most common solid tumors in children in Canada. While technological advances have increased their survival rates, survivors of childhood brain tumors (SCBT) often develop obesity, which can reduce lifespan and quality of life. While adiposity is a known factor for cardiometabolic disorders in the general population, adiposity patterns in SCBT have not been determined. This study aims to investigate how adiposity patterns differ between SCBT and non-cancer controls, and how lifestyle and treatment factors may contribute to these patterns. Methods: Fifty-nine SCBT and 108 non-cancer controls were recruited from the clinics at McMaster Children’s Hospital. Sociodemographic and lifestyle details were collected using standardized tools to assess diet, physical activity, and sleep. Brain tumor type, location and treatment details were obtained from medical records. Total and visceral adiposity were determined by total fat mass (FM) as well as waist-to-hip (WHR) and waist-to-height ratio (WHTR). Results: SCBT have higher total and visceral adiposity, while BMI is similar to controls. Female SCBT who received radiotherapy and/or chemotherapy have higher adiposity. A dietary pattern of white bread and fried foods with low dark bread was positively associated with adiposity. Lower physical activity levels, but not sleep durations, were associated with higher adiposity. Conclusion: SCBT have higher visceral and total adiposity than non-cancer controls. Sex, chemoradiotherapy, high fat diet, and physical inactivity, can contribute to these adiposity patterns. These results provide multiple points of entry to design interventions that reduce adiposity, and may improve long-term outcomes in SCBT.


2019 ◽  
Vol 20 (10) ◽  
pp. 2372 ◽  
Author(s):  
Mette L. Johansen ◽  
Jason Vincent ◽  
Haley Gittleman ◽  
Sonya E. L. Craig ◽  
Marta Couce ◽  
...  

An integrated approach has been adopted by the World Health Organization (WHO) for diagnosing brain tumors. This approach relies on the molecular characterization of biopsied tissue in conjunction with standard histology. Diffuse gliomas (grade II to grade IV malignant brain tumors) have a wide range in overall survival, from months for the worst cases of glioblastoma (GBM) to years for lower grade astrocytic and oligodendroglial tumors. We previously identified a change in the cell adhesion molecule PTPmu in brain tumors that results in the generation of proteolytic fragments. We developed agents to detect this cell surface-associated biomarker of the tumor microenvironment. In the current study, we evaluated the PTPmu biomarker in tissue microarrays and individual tumor samples of adolescent and young adult (n = 25) and adult (n = 69) glioma populations using a fluorescent histochemical reagent, SBK4-TR, that recognizes the PTPmu biomarker. We correlated staining with clinical data and found that high levels of the PTPmu biomarker correlate with increased survival of glioma patients, including those with GBM. Patients with high PTPmu live for 48 months on average, whereas PTPmu low patients live only 22 months. PTPmu high staining indicates a doubling of patient survival. Use of the agent to detect the PTPmu biomarker would allow differentiation of glioma patients with distinct survival outcomes and would complement current molecular approaches used in glioma prognosis.


Cancers ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1546 ◽  
Author(s):  
Alena Kopkova ◽  
Jiri Sana ◽  
Tana Machackova ◽  
Marek Vecera ◽  
Lenka Radova ◽  
...  

Central nervous system (CNS) malignancies include primary tumors that originate within the CNS as well as secondary tumors that develop as a result of metastatic spread. Circulating microRNAs (miRNAs) were found in almost all human body fluids including cerebrospinal fluid (CSF), and they seem to be highly stable and resistant to even extreme conditions. The overall aim of our study was to identify specific CSF miRNA patterns that could differentiate among brain tumors. These new biomarkers could potentially aid borderline or uncertain imaging results onto diagnosis of CNS malignancies, avoiding most invasive procedures such as stereotactic biopsy or biopsy. In total, 175 brain tumor patients (glioblastomas, low-grade gliomas, meningiomas and brain metastases), and 40 non-tumor patients with hydrocephalus as controls were included in this prospective monocentric study. Firstly, we performed high-throughput miRNA profiling (Illumina small RNA sequencing) on a discovery cohort of 70 patients and 19 controls and identified specific miRNA signatures of all brain tumor types tested. Secondly, validation of 9 candidate miRNAs was carried out on an independent cohort of 105 brain tumor patients and 21 controls using qRT-PCR. Based on the successful results of validation and various combination patterns of only 5 miRNA levels (miR-30e, miR-140, let-7b, mR-10a and miR-21-3p) we proposed CSF-diagnostic scores for each tumor type which enabled to distinguish them from healthy donors and other tumor types tested. In addition to this primary diagnostic tool, we described the prognostic potential of the combination of miR-10b and miR-196b levels in CSF of glioblastoma patients. In conclusion, we performed the largest study so far focused on CSF miRNA profiling in patients with brain tumors, and we believe that this new class of biomarkers have a strong potential as a diagnostic and prognostic tool in these patients.


2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi98-vi98
Author(s):  
Radim Jancalek ◽  
Martin Smrcka ◽  
Alena Kopkova ◽  
Jiri Sana ◽  
Marek Vecera ◽  
...  

Abstract Cerebrospinal fluid (CSF) baths extracellular environment of the central nervous system, and thus, it is ideal source of tumor diagnostic biomarkers like microRNAs (miRNAs), short non-coding RNAs involved in the pathogenesis of many cancers. As dysregulated levels of brain tumor specific miRNAs have been already observed in CSF, analysis of CSF miRNAs in brain tumor patients might help to develop new diagnostic platform. Next-Generation sequencing (NGS) was performed for analysis of small RNAs in 89 CSF samples taken from 32 glioblastomas (GBM), 14 low-grade gliomas (LGG), 11 meningiomas, 13 brain metastases and 19 non-tumor donors. Subsequently, according to NGS results levels of 10 miRNAs were measured in independent set of CSF samples (41 GBM, 44 meningiomas, 12 brain metastases and 20 non-tumor donors) using TaqMan Advanced miRNA Assays. NGS analysis revealed 22, 12 and 35 CSF miRNAs with significantly different levels in GBM, meningiomas, and brain metastases (adj.p < 0.0005, adj.p < 0.01, and adj.p < 0.005) respectively, in comparison with non-tumor CSF samples. Subsequent validation of selected CSF miRNAs has confirmed different levels of 7 miRNAs in GBM, 2 in meningiomas, and 2 in brain metastases compared to non-tumors. Panel of miR-30e-5p and miR-140-5p was able to distinguish brain metastases with 65% sensitivity and 100% specificity compared to non-tumor samples (AUC = 0.8167); panel of miR-21-3p and miR-196-5p classified metastatic patients with 78% sensitivity and 92 % specificity in comparison to GBM (AUC = 0.90854) and with 75% sensitivity and 83% specificity compared to meningiomas (AUC = 0.84848). We have observed that CSFs from patients with various primary brain tumors and metastases are characterized by specific miRNA signatures. This work was supported by the Ministry of Health, Czech Republic grant nr. NV18-03-00398 and the Ministry of Education, Youth and Sports, Czech Republic under the project CEITEC 2020 (LQ1601).


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Disha Sood ◽  
Min Tang-Schomer ◽  
Dimitra Pouli ◽  
Craig Mizzoni ◽  
Nicole Raia ◽  
...  

Abstract Dynamic alterations in the unique brain extracellular matrix (ECM) are involved in malignant brain tumors. Yet studies of brain ECM roles in tumor cell behavior have been difficult due to lack of access to the human brain. We present a tunable 3D bioengineered brain tissue platform by integrating microenvironmental cues of native brain-derived ECMs and live imaging to systematically evaluate patient-derived brain tumor responses. Using pediatric ependymoma and adult glioblastoma as examples, the 3D brain ECM-containing microenvironment with a balance of cell-cell and cell-matrix interactions supports distinctive phenotypes associated with tumor type-specific and ECM-dependent patterns in the tumor cells’ transcriptomic and release profiles. Label-free metabolic imaging of the composite model structure identifies metabolically distinct sub-populations within a tumor type and captures extracellular lipid-containing droplets with potential implications in drug response. The versatile bioengineered 3D tumor tissue system sets the stage for mechanistic studies deciphering microenvironmental role in brain tumor progression.


Neurosurgery ◽  
1990 ◽  
Vol 27 (6) ◽  
pp. 887-891 ◽  
Author(s):  
Bonnie Brookshire ◽  
Donna R. Copeland ◽  
Bartlett D. Moore ◽  
Joann Ater

Abstract We report on the neuropsychological status of 31 children with primary brain tumors who underwent assessment before receiving therapy. Overall, the children performed within normal limits in all test areas. The exception was the group with anterior hemispheric tumors who demonstrated deficits in executive cognitive functions. Also, when compared according to tumor type, children with midline tumors and hydrocephalus performed more poorly than others on measures of intelligence, executive abilities, visual-motor skills, and fine-motor functions. Although one-half to two-thirds of the children with supratentorial midline and infratentorial tumors had cranial nerve, oculomotor, or cerebellar deficits, only the latter were associated with specific neuropsychological deficits (poorer performance on fine-motor and visual-motor tests). Age did not appear to be a factor in these children's neuropsychological test performances.


Author(s):  
I. Lax ◽  
M. Daniels ◽  
C. Kanter ◽  
W. Mason ◽  
K. Edelstein

Individuals with primary brain tumors experience a range of physical, cognitive and psychosocial sequelae which impact their independence, safety and quality of life. These impairments may be addressed through rehabilitation intervention. Despite acknowledgement that timely rehabilitation services over the course of the disease process is of benefit, few outpatient neuro-oncology treatment teams include a rehabilitation professional. Purpose: The aims are: (1) to describe a rehabilitation consultation model of care integrated into outpatient neuro-oncology treatment for individuals with primary brain tumors; and (2) to describe the characteristics of individuals referred for rehabilitation services. Methods: This retrospective descriptive study examined data from 200 individuals that received rehabilitation consultation from January 2015 to March 2016 at Princess Margaret Hospital, Pencer Brain Tumor Centre. Information on patient demographics, referral characteristics, and number of patient care visits was collected. Descriptive statistics were calculated. Preliminary Results: Of all patients, (n=195), the most common diagnosis is glioblastoma, 39% (n=76), and 50% are 50-69 years of age (M=55, SD=15.0). The most common reason for initial referral was decline in physical functioning, strength and balance (41%). In 77% of cases, patients were seen immediately at the time of referral. In total, 540 consultations were completed (face-to-face=230, telephone=310) with 2.78 on average (SD=4.0) per patient. Conclusion: Given the range of symptoms that individuals with primary brain tumors experience coupled with changes in functional status as the disease progresses, integrated and timely rehabilitation consultation is feasible.


Blood ◽  
2017 ◽  
Vol 129 (13) ◽  
pp. 1831-1839 ◽  
Author(s):  
Julia Riedl ◽  
Matthias Preusser ◽  
Pegah Mir Seyed Nazari ◽  
Florian Posch ◽  
Simon Panzer ◽  
...  

Key Points Brain tumor patients have a very high risk of VTE. Podoplanin expression by primary brain tumors induces platelet aggregation and is associated with hypercoagulability and a high risk of VTE.


Sign in / Sign up

Export Citation Format

Share Document