EXTH-50. THE COMPLEXITIES OF FATTY ACID DESATURATION IN GLIOBLASTOMA

2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi174-vi174
Author(s):  
Nicole Oatman ◽  
Biplab Dasgupta

Abstract Fatty acid desaturation is an enzymatic reaction in which a double bond is introduced into an acyl chain. Monounsaturated fatty acids (MUFA) are essential components of membrane. The most abundant MUFA-synthesizing enzyme is the delta 9 desaturate called Stearoyl Co-A Desaturase (SCD and SCD5 in humans, and SCD1-4 in mice). SCD desaturates Stearoyl-CoA (C18) and palmitoyl-CoA (C16) to oleoyl-CoA (C18:1) and palmitoyl-CoA (C16:1), respectively. SCD is often upregulated and a therapeutic target in cancer. We made an unexpected discovery that that median expression of SCD is low in glioblastoma relative to normal brain due to hypermethylation and monoallelic co-deletion with the tumor suppressor PTEN in a subset of patients. Cell lines from this subset, expressed nearly undetectable SCD yet they retained residual SCD enzymatic activity. Surprisingly, these lines evolved to survive independent of SCD through unknown mechanisms. On the other hand, cell lines that escaped such genetic and epigenetic alterations expressed higher levels of SCD and were highly dependent on SCD for survival. Finally, we identify that SCD-dependent lines acquire resistance through a previously unknown mechanism that involved drug-induced target (SCD) upregulation by the transcription factor FOSB. Accordingly, FOSB inhibition blunted acquired resistance and extended survival of tumor bearing mice treated with SCD inhibitor. Our findings reveal an intriguing feature of the cancer genome that may be used to stratify PTEN deleted cancer patients for SCD inhibitor therapy. A recent study showed that some cancer cells can use another MUFA-synthesizing enzyme FADS2 to bypass the SCD reaction. However, our data shows that the SCD inhibitor- resistant GBM lines are also FADS2-independent. Our targeted and untargeted metabolomics studies revealed unexpected findings that cannot be explained by conventional wisdom, and may lead to identification of novel lipogenic targets in GBM.

2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii225-ii225
Author(s):  
Nicole Oatman ◽  
Julie Reisz ◽  
Angelo D’Alessandro ◽  
Biplab Dasgupta

Abstract Fatty acid desaturation is an enzymatic reaction in which a double bond is introduced into an acyl chain. Of the four functionally distinct desaturase subfamilies, the First Desaturase Family of enzymes introduce the first double bond into a saturated fatty acid, resulting in the synthesis of monounsaturated fatty acids (MUFA). MUFA are essential components of membrane and storage lipids and exert a profound influence on the fluidity of biological membranes. A disequilibrium in saturated to unsaturated fatty acid ratio alters cell growth, differentiation and response to external stimuli, and thus affects a range of pathologies including cancer. The most abundant and key First Desaturase Family enzyme is the delta 9 desaturate called Stearoyl Co-A Desaturase (SCD and SCD5 in humans, and SCD1-4 in mice). SCD desaturates Stearoyl-CoA (C18) and palmitoyl-CoA (C16) to oleoyl-CoA (C18:1) and palmitoyl-CoA (C16:1), respectively. Besides SCD, the only known First Desaturase in mammals with dual function is FADS2 which desaturates palmitate to Sapienate (C16:1, a positional isomer of palmitoleate) in skin cells. A recent study showed that some cancer cells can use FADS2 to bypass the SCD reaction. SCD and SCD5 are by far the most abundant desaturases expressed in the human brain. We made an unexpected discovery that SCD undergoes monoallelic codeletion with PTEN on chromosome 10, and is also highly methylated in glioblastoma (GBM). More surprisingly, all GBM cell lines with SCD codeletion/methylation (that expressed very little SCD protein) are completely resistant to SCD/SCD5 inhibition, yet their phospholipids contained abundant oleic acid. It is unknown if GBMs bypassed SCD, but retained the delta 9 desaturation reaction through a novel enzymatic activity. Our targeted and untargeted metabolomics studies revealed unexpected findings that cannot be explained by conventional wisdom, and may lead to identification of novel lipogenic targets in GBM.


2020 ◽  
Vol 3 (Supplement_1) ◽  
pp. i9-i9
Author(s):  
Nicole Oatman ◽  
Biplab Dasgupta

Abstract Fatty acid desaturation is an enzymatic reaction in which a double bond is introduced into an acyl chain. Of the four functionally distinct desaturase subfamilies, the First Desaturase Family of enzymes introduce the first double bond into a saturated fatty acid, resulting in the synthesis of monounsaturated fatty acids (MUFA). MUFA are essential components of membrane and storage lipids and exert a profound influence on the fluidity of biological membranes. A disequilibrium in saturated to unsaturated fatty acid ratio alters cell growth, differentiation and response to external stimuli, and thus affects a range of pathologies including cancer. The most abundant and key First Desaturase Family enzyme is the delta 9 desaturate called Stearoyl Co-A Desaturase (SCD and SCD5 in humans, and SCD1-4 in mice). SCD desaturates Stearoyl-CoA (C18) and palmitoyl-CoA (C16) to oleoyl-CoA (C18:1) and palmitoyl-CoA (C16:1), respectively. Besides SCD, the only known First Desaturase in mammals with dual function is FADS2 which desaturates palmitate to Sapienate (C16:1, a positional isomer of palmitoleate) in skin cells. A recent study showed that some cancer cells can use FADS2 to bypass the SCD reaction. SCD and SCD5 are by far the most abundant desaturases expressed in the human brain. We made an unexpected discovery that SCD undergoes monoallelic codeletion with PTEN on chromosome 10, and is also highly methylated in glioblastoma (GBM). More surprisingly, all GBM cell lines with SCD codeletion/methylation (that expressed very little SCD protein) are completely resistant to SCD/SCD5 inhibition, yet their phospholipids contained abundant oleic acid. It is unknown if GBMs bypassed SCD, but retained the delta 9 desaturation reaction through a novel enzymatic activity. Our targeted and untargeted metabolomics studies revealed unexpected findings that cannot be explained by conventional wisdom, and may lead to identification of novel lipogenic targets in GBM.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Bouchra Taïb ◽  
Amine M. Aboussalah ◽  
Mohammed Moniruzzaman ◽  
Suming Chen ◽  
Norman J. Haughey ◽  
...  

AbstractGlioblastoma multiforme (GBM) is the most common and lethal primary malignant brain tumor in adults. Despite the multimodal standard treatments for GBM, the median survival is still about one year. Analysis of brain tissues from GBM patients shows that lipid droplets are highly enriched in tumor tissues while undetectable in normal brain tissues, yet the identity and functions of lipid species in GBM are not well understood. The aims of the present work are to determine how GBM utilizes fatty acids, and assess their roles in GBM proliferation. Treatment of U138 GBM cells with a monounsaturated fatty acid, oleic acid, induces accumulation of perilipin 2-coated lipid droplets containing triglycerides enriched in C18:1 fatty acid, and increases fatty acid oxidation. Interestingly, oleic acid also increases glucose utilization and proliferation of GBM cells. In contrast, pharmacologic inhibition of monoacylglycerol lipase attenuates GBM proliferation. Our findings demonstrate that monounsaturated fatty acids promote GBM proliferation via triglyceride metabolism, suggesting a novel lipid droplet-mediated pathway which may be targeted for GBM treatment.


2017 ◽  
Vol 114 (52) ◽  
pp. 13679-13684 ◽  
Author(s):  
Yapeng Su ◽  
Wei Wei ◽  
Lidia Robert ◽  
Min Xue ◽  
Jennifer Tsoi ◽  
...  

Continuous BRAF inhibition of BRAF mutant melanomas triggers a series of cell state changes that lead to therapy resistance and escape from immune control before establishing acquired resistance genetically. We used genome-wide transcriptomics and single-cell phenotyping to explore the response kinetics to BRAF inhibition for a panel of patient-derived BRAFV600-mutant melanoma cell lines. A subset of plastic cell lines, which followed a trajectory covering multiple known cell state transitions, provided models for more detailed biophysical investigations. Markov modeling revealed that the cell state transitions were reversible and mediated by both Lamarckian induction and nongenetic Darwinian selection of drug-tolerant states. Single-cell functional proteomics revealed activation of certain signaling networks shortly after BRAF inhibition, and before the appearance of drug-resistant phenotypes. Drug targeting those networks, in combination with BRAF inhibition, halted the adaptive transition and led to prolonged growth inhibition in multiple patient-derived cell lines.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3991-3991 ◽  
Author(s):  
Yoko Tabe ◽  
Linhua Jin ◽  
Hiroko Iwanami ◽  
Hiromichi Matsushita ◽  
Saiko Kazuno ◽  
...  

Abstract Hypoxia is one of the essential components of the leukemia bone marrow (BM) microenvironment that promotes leukemia cell homing, survival and chemoresistance (Benito, PlosOne 2011). Tyrosine kinase inhibitors (TKIs) do not eradicate the total mass of chronic myeloid leukemia (CML) cells including primitive and quiescent cells. Persistence of CML cells in the hypoxic BM niche after cessation of TKI therapy may result in disease relapse. We have reported that hypoxia adapted CML cells acquire TKI resistance associated with higher glyoxalase-1 (Glo-1) enzyme activity which detoxifies methylglyoxal, a cytotoxic by-product of glycolysis (Takeuchi, Cell Death Differ 2010). In this study, we employed a proteomic approach based on isobaric tags for relative and absolute quantification (iTRAQ, Applied Biosystems) to investigate additional molecular mechanisms of CML adaptation to hypoxia and acquired resistance to dasatinib under hypoxic conditions. The specific pathway alterations were identified by KEGG(Kyoto University) and MetaCore (GeneGo). We utilized two hypoxia-adapted (HA) subclones of CML cell lines, KCL22-HA and KBM5-HA cells, which were selected over a month under 1.0 % oxygen culture conditions. The growth rate of both HA-CML cell lines was slower than that of the corresponding parental cells (ratio of incremental increase in cell numbers, 0.39 for KCL22-HA/KCL22, 0.54 for KBM5-HA/KBM5 at 48hrs). Although parental KCL22 cells were sensitive to dasatinib, KCL22-HA cultured under hypoxia acquired resistance to dasatinib (IC50: KCL22 0.1 nM, KCL22-HA >20nM, at 48hrs by MTT). In contrast, dasatinib induced more prominent cell growth inhibition in KBM5-HA cells cultured under hypoxia compared to KBM5 parental cells (IC50: KBM5 1.3 nM, KBM-5/HA 0.3 nM). Dasatinib effectively downregulated the phosphorylation levels of Stat5 and ERK in parental KCL22 and KBM5 cells. Notably, the baseline levels of p-Stat5 and p-ERK were markedly diminished in both KCL22-HA and KBM5-HA cells. We next performed iTRAQ proteomic analysis and detected more than 1,300 proteins in each cell type. Comparison of the basal proteome of KCL22 vs KCL22-HA and KBM5 vs KBM5-HA cells showed differential expression of 54 proteins in KCL22 isogenic cells (37 upregulated, 17 downregulated) and of 159 proteins in KBM5 cells (56 upregulated, 103 downregulated). These alterations included consistent activation of glycolysis and gluconeogenesis pathway (p<0.0001) along with increased ATP synthase (p=0.02) and hypoxia induced HIF1 activation (p<0.0001) in both cells adapted to grow under hypoxia. In dasatinib-resistant KCL-HA cells, these changes were partially reversed by dasatinib which affected expression of 19 proteins (5 up-regulated / 14 down-regulated) with significant decrease in oxidative phosphorylation (p=0.01), ATP synthase (p=0.02), spliceosome (p=0.02) and Cytochrome C (p=0.04). On the contrary, in dasatinib-sensitive KBM5-HA cells dasatinib upregulated 296 proteins including 39 apoptogenic proteins such as Cytochrome C (p<0.001) and apoptosis related mitochondrial chaperones HSP10 and HSP60 (p<0.001), along with further upregulation of the enzymes involved in the glycolytic energy production (p<0.001) and stimulation of nuclear mRNA splicing via spliceosome (p<0.001), known to play a crucial role in the control of gene expression of the apoptosis-regulating genes. We observed the consistent upregulation of glycolysis and increases of ribosome and spliceosome after dasatinib treatment in dasatinib-sensitive parental KCL22 and KBM5 cells. Interestingly, dasatinib-resistant KBM5-STI cells harboring T315 Bcr-Abl mutation exhibited significantly lower levels of baseline gluconeogenesis (p<0.0001) and translation regulation of translation initiation pathways (p<0.0001) compared to the parental KBM5 cells. In summary, these findings demonstrate the dramatic metabolic changes in hypoxia adjusted CML cells and indicate that hypoxia adapted / dasatinib resistant CML cells repress their stimulated glycolic metabolic state and oxidative phosphorylation along with spliceosomal mRNA splicing after dasatinib exposure, which allow them to enter quiescent stage and escape from apoptosis. Altogether these data indicate novel mechanisms of acquired bone marrow microenvironment-mediated resistance to TKI in CML. Disclosures: Tabe: Bristol-Myers Squibb: Research Funding.


Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 674
Author(s):  
Sami Kazaz ◽  
Romane Miray ◽  
Sébastien Baud

Interactions between land plants and other organisms such as pathogens, pollinators, or symbionts usually involve a variety of specialized effectors participating in complex cross-talks between organisms. Fatty acids and their lipid derivatives play important roles in these biological interactions. While the transcriptional regulation of genes encoding acyl–acyl carrier protein (ACP) desaturases appears to be largely responsive to biotic stress, the different monounsaturated fatty acids produced by these enzymes were shown to take active part in plant biotic interactions and were assigned with specific functions intrinsically linked to the position of the carbon–carbon double bond within their acyl chain. For example, oleic acid, an omega-9 monounsaturated fatty acid produced by ∆9-stearoyl–ACP desaturases, participates in signal transduction pathways affecting plant immunity against pathogen infection. Myristoleic acid, an omega-5 monounsaturated fatty acid produced by ∆9-myristoyl–ACP desaturases, serves as a precursor for the biosynthesis of omega-5 anacardic acids that are active biocides against pests. Finally, different types of monounsaturated fatty acids synthesized in the labellum of orchids are used for the production of a variety of alkenes participating in the chemistry of sexual deception, hence favoring plant pollination by hymenopterans.


1985 ◽  
Vol 101 (4) ◽  
pp. 1591-1598 ◽  
Author(s):  
D S Roos ◽  
P W Choppin

The preceding communication (Roos, D.S. and P.W. Choppin, 1985, J. Cell Biol. 101:1578-1590) described the lipid composition of a series of mouse fibroblast cell lines which vary in susceptibility to the fusogenic effects of polyethylene glycol (PEG). Two alterations in lipid content were found to be directly correlated with resistance to PEG-induced cell fusion: increases in fatty acyl chain saturation, and the elevation of neutral glycerides, including an unusual ether-linked compound. In this study, we have probed the association between lipid composition and cell fusion through the use of fatty acid supplements to the cellular growth medium, and show that the fusibility of cells can be controlled by altering their acyl chain composition. The parental Clone 1D cells contain moderately unsaturated fatty acids with a ratio of saturates to polyunsaturates (S/P) approximately 1 and fuse virtually to completion following a standard PEG treatment. By contrast, the lipids of a highly fusion-resistant mutant cell line, F40, are highly saturated (S/P approximately 4). When the S/P ratio of Clone 1D cells was increased to approximate that normally found in F40 cells by growth in the presence of high concentrations of saturated fatty acids, they became highly resistant to PEG. Reduction of the S/P ratio of F40 cells by growth in cis-polyunsaturated fatty acids rendered them susceptible to fusion. Cell lines F8, F16, etc., which are normally intermediate between Clone 1D and F40 in both lipid composition and fusion response, can be altered in either direction (towards either increased or decreased susceptibility to fusion) by the addition of appropriate fatty acids to the growth medium. Although trans-unsaturated fatty acids have phase-transition temperatures roughly similar to saturated compounds, and might therefore be expected to affect membrane fluidity in a similar manner, trans-unsaturated fatty acids exerted the same effect as cis-unsaturates on the control of PEG-induced cell fusion. This observation suggests that the control of cell fusion by alteration of fatty acid content is not due to changes in membrane fluidity, and thus that the fatty acids are involved in some other way in the modulation of cell fusion.


2021 ◽  
Vol 7 (7) ◽  
pp. eabd7459
Author(s):  
Nicole Oatman ◽  
Nupur Dasgupta ◽  
Priyanka Arora ◽  
Kwangmin Choi ◽  
Mruniya V. Gawali ◽  
...  

The lipogenic enzyme stearoyl CoA desaturase (SCD) plays a key role in tumor lipid metabolism and membrane architecture. SCD is often up-regulated and a therapeutic target in cancer. Here, we report the unexpected finding that median expression of SCD is low in glioblastoma relative to normal brain due to hypermethylation and unintentional monoallelic co-deletion with phosphatase and tensin homolog (PTEN) in a subset of patients. Cell lines from this subset expressed undetectable SCD, yet retained residual SCD enzymatic activity. Unexpectedly, these lines evolved to survive independent of SCD through unknown mechanisms. Cell lines that escaped such genetic and epigenetic alterations expressed higher levels of SCD and were highly dependent on SCD for survival. Last, we identify that SCD-dependent lines acquire resistance through a previously unknown FBJ murine osteosarcoma viral oncogene homolog B (FOSB)–mediated mechanism. Accordingly, FOSB inhibition blunted acquired resistance and extended survival of tumor-bearing mice treated with SCD inhibitor.


2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi33-vi33
Author(s):  
Nicole Oatman ◽  
Nupur Dasgupta ◽  
Biplab Dasgupta ◽  
Kwangmin Choi ◽  
Mruniya Gawali ◽  
...  

Abstract A status-quo in targeted cancer therapy is that out of the thousands of somatic alterations found in a cancer cell, alterations only in driver genes determine therapeutic strategy. Despite unimpressive results of some driver-targeted therapies, and given that the majority of genomic alterations in cancer are not ‘drivers’, but ‘passengers’ / bystander alterations, it remains underappreciated whether targeting built-in vulnerabilities imposed by passenger gene alterations may provide therapeutic value. The tumor suppressor PTEN undergoes widespread functional inactivation including deletion in human cancer. PTEN deletion occurs frequently in GBM, sometimes as part of the 10q loss or chromosome 10 monosomy. We discovered that several genes including Stearoyl Co-A Desaturase, SCD (10q24.31), located 12 MB telomeric to PTEN is frequently co-deleted hemizygously and unintentionally in PTEN-deleted cancers. Strikingly, in a subset of GBM, SCD was also epigenetically silenced. A combination of SCD deletion and methylation resulted in two molecular subgroups – one that expressed SCD, and another that showed little or no detectable SCD. SCD, is an integral membrane protein of the endoplasmic reticulum and converts saturated fatty acids to monounsaturated fatty acids (Oleic and palmitoleic acids) that are critical for membrane fluidity and function, and thus SCD is generally overexpressed in most cancers. We show that SCD expressing lines are highly sensitive to multiple SCD inhibitors, while non-expressors are resistant. Despite modest BBB penetration, one SCD inhibitor was remarkably efficient in blocking intracranial tumor growth. SCD is an oxygen-dependent enzyme. We show that SCD retains significant enzymatic activity even in highly hypoxic conditions. Finally, through RNAseq, functional proteomics and ATACseq, we demonstrate an evolutionarily conserved mechanism of acquired resistance to SCD inhibitor through drug-induced acute phase signaling response in multiple SCD expressing cancers.


2021 ◽  
Vol 118 (34) ◽  
pp. e2024055118
Author(s):  
Helen S. Mueller ◽  
Colin E. Fowler ◽  
Simona Dalin ◽  
Enrico Moiso ◽  
Tee Udomlumleart ◽  
...  

Epigenetic regulators play key roles in cancer and are increasingly being targeted for treatment. However, for many, little is known about mechanisms of resistance to the inhibition of these regulators. We have generated a model of resistance to inhibitors of protein arginine methyltransferase 5 (PRMT5). This study was conducted in KrasG12D;Tp53-null lung adenocarcinoma (LUAD) cell lines. Resistance to PRMT5 inhibitors (PRMT5i) arose rapidly, and barcoding experiments showed that this resulted from a drug-induced transcriptional state switch, not selection of a preexisting population. This resistant state is both stable and conserved across variants arising from distinct LUAD lines. Moreover, it brought with it vulnerabilities to other chemotherapeutics, especially the taxane paclitaxel. This paclitaxel sensitivity depended on the presence of stathmin 2 (STMN2), a microtubule regulator that is specifically expressed in the resistant state. Remarkably, STMN2 was also essential for resistance to PRMT5 inhibition. Thus, a single gene is required for both acquisition of resistance to PRMT5i and collateral sensitivity to paclitaxel in our LUAD cells. Accordingly, the combination of PRMT5i and paclitaxel yielded potent and synergistic killing of the murine LUAD cells. Importantly, the synergy between PRMT5i and paclitaxel also extended to human cancer cell lines. Finally, analysis of The Cancer Genome Atlas patient data showed that high STMN2 levels correlate with complete regression of tumors in response to taxane treatment. Collectively, this study reveals a recurring mechanism of PRMT5i resistance in LUAD and identifies collateral sensitivities that have potential clinical relevance.


Sign in / Sign up

Export Citation Format

Share Document