TMOD-19. FROM PATIENT TO PETRI DISH: INCREASING PATIENT-DERIVED GLIOBLASTOMA CULTURE EFFICIENCIES TO 95%

2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi219-vi219
Author(s):  
Cassandra Verheul ◽  
Federica Fabro ◽  
Ioannis Ntafoulis ◽  
Cecile Beerens ◽  
Youri Hoogstrate ◽  
...  

Abstract INTRODUCTION The search for effective therapies for gliomas is progressively moving towards patient-specific medicine. In order to test patient-tailored therapies, it is vital to develop protocols for reliable establishment of patient-derived glioma cultures. We present a method for reliable culture establishment, with a 95% success rate in 114 consecutive high-grade samples. METHODS Cell cultures were established from either traditionally-resected tumor tissue or ultrasonic surgical aspirator (CUSA) derived tissue fragments, and expanded in serum-free culture, with selection of astrocytic populations if required. Cultures were started from single cells or small tumor fragments of 0.5-3mm (3D). Whole exome and RNA sequencing were carried out with the Illumina Novaseq and HiSeq platforms. Methylation profiling was performed with the Infinium MethylationEPIC array. Cultures and tumors were compared through analysis of single nucleotide polymorphisms and copy number profiles with the Infinium Global Screening Array. Intra-tumoral heterogeneity in cultures was investigated with single-cell transcriptomic sequencing (SORT-seq). We studied tumor-initiating potential by orthotopic injection of cultures in NOD-SCID mice. RESULTS Cultures started from single cells were established from CUSA material more efficiently (92%) than from traditional resection material (70%). 3D-derived cultures had a higher overall efficiency (95% for CUSA, 85% for traditional resection material). We confirmed high concordance in driver mutations, copy number and methylation profiles between tumors and derived cultures. Transcriptomics analysis, comparing tumors and derived cultures, revealed high consistency in gene expression distribution as demonstrated by correlation analysis (r=0.88). Singe-cell RNA-seq shows increased heterogeneity in CUSA derived-cultures, and decreased heterogeneity with passaging over time. Cultures faithfully produce tumors after orthotopic injection in NOD-SCID mice. CONCLUSION We present a highly successful method for the establishment of glioma cultures from patient material, with CUSA-derived cultures revealing greater heterogeneity. Cultures faithfully represent important molecular characteristics of parental tumors and can be used to test potential therapies in vitro.

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3788-3788
Author(s):  
Caroline L Furness ◽  
Marcela B Mansur ◽  
Victoria J Weston ◽  
Sarah Jenkinson ◽  
Frederik W van Delft ◽  
...  

Abstract Introduction The STIL-TAL1 fusion is found in 16% cases of paediatric and adolescent T-ALL, making it one of the most common T-ALL subgroups. Our study considers this leukaemia subtype in the context of a complex ecosystem that is diverse, evolving and subject to selective pressures. We used single cell methods to understand the order of co-operating mutational events and the clonal evolution of mutations in genes that are re-iteratively targeted, such as PTEN. Methods Diagnostic DNA from five STIL-TAL1 positive T-ALL cases was exome sequenced using Agilent SureSelect Human all Exon kit plus Illumina paired end sequencing. Driver copy number alterations and NOTCH1/PTEN exon 7 mutation status had been identified in a previous study and candidate driver mutations for inclusion in single cell experiments were validated by sequencing or Q-PCR using custom assays. Where more than one mutation was present within the same exon of a candidate driver gene, cloning experiments were carried out to verify the independent mutation sequences. Material from xenograft transplants was available in three of the five cases to assess their clonal heterogeneity in the leukaemia initiating cell compartment. Single cell multiplex Q-PCR was used to examine the single cell genetics of the pre-defined mutation events. Briefly, single cells were sorted and lysed prior to multiplex specific (DNA) target amplification and Q-PCR using the 96.96 dynamic microfluidic array and the BioMark HD (Fluidigm, UK). Copy number assays for the 1p33 deletion and custom assays for the patient specific STIL-TAL1 fusion breakpoints were used to confirm that the 1p33 deletion leading to this gene fusion was a clonal event. Results The only aberrant events common to all five samples were CKDN2A copy number loss and the 1p33 deletion that results in the STIL-TAL1 fusion. Exome sequencing revealed further mutations in known T-ALL drivers including NOTCH1, PTEN and PHF6 as well as candidate driver mutations in FREM2, PIK3CD, RPL14, BMPR1A and CDH18. Both NOTCH1 and PTEN demonstrated re-iterative inactivation and this was investigated in detail for PTEN. Case 1 had multiple PTEN exon 7 mutations and sub-clonal copy number loss. Case 2 had parallel frameshift mutations in PTEN exons 5 and 7. Case 3 contained an exon 8 mutation and multiple PTEN exon 7 mutations. In this case the three most frequent PTEN exon 7 indels were validated and tracked in a single cell multiplex Q-PCR experiment. This revealed a branching sub-clonal genetic architecture (see figure 1) in which all malignant cells at the proposed apex of the branching architecture harboured the STIL-TAL1 fusion and CDKN2A deletion with copy number losses of 4p, 6q and FREM2 and PTEN mutations occurring as sub-clonal events. PTEN indels 2 and 3 were found co-localised in the same sub-clone. Preliminary analysis of the paired mouse xenograft bone marrow did not detect PTEN exon 7 indels 1 – 3 in 84 single cells. However, bulk Sanger Sequencing analysis did identify the PTEN exon 8 mutation in the mouse. Ongoing work is in progress to determine whether single cells of the xenograft carry alternative PTEN exon 7 mutations detected in the diagnostic sample exome data and to characterise in which diagnostic sub-clone the PTEN exon 8 mutation resides. Conclusions This study demonstrates how exome sequencing and single cell multiplex Q-PCR can be used as complementary tools to understand the sub-clonal complexity of STIL-TAL1 T-ALL. PTEN inactivation is sub-clonal by single cell analysis, demonstrating the parallel evolution of multiple independent PTEN inactivated sub-clones, highlighting PTEN inactivation as a key event in this T-ALL subgroup. In a wider cohort of 20 patients collected by our group at least 50% had PTEN inactivation as assessed by sequencing of exon 7 and copy number data alone. Results indicate a strong evolutionary pressure selecting for mutational events that result in inactivation of the PTEN-PI3Kinase pathway. These events occur via multiple mechanisms, including copy number loss and truncating mutations, which are not limited to the known T-ALL hotspot in exon 7. Current work is focussing on using a similar approach to examine the clonal evolution of NOTCH1 mutations in STIL-TAL1 T-ALL samples in diagnostic and xenograft samples of cases 4 and 5. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Gabriele Manzella ◽  
Leonie D. Schreck ◽  
Willemijn B. Breunis ◽  
Jan Molenaar ◽  
Hans Merks ◽  
...  

Abstract Cancer therapy is currently shifting from broadly used cytotoxic drugs to patient-specific precision therapies. Druggable driver oncogenes, identified by molecular analyses, are present in only a subset of patients. Functional profiling of primary tumor cells could circumvent these limitations, but suitable platforms are unavailable for most cancer entities. Here, we describe an in vitro drug profiling platform for rhabdomyosarcoma (RMS), using a living biobank composed of twenty RMS patient-derived xenografts (PDX) for high-throughput drug testing. Optimized in vitro conditions preserve phenotypic and molecular characteristics of primary PDX cells and are compatible with propagation of cells directly isolated from patient tumors. Besides a heterogeneous spectrum of responses of largely patient-specific vulnerabilities, profiling with a large drug library reveals a strong sensitivity towards AKT inhibitors in a subgroup of RMS. Overall, our study highlights the feasibility of in vitro drug profiling of primary RMS for patient-specific treatment selection in a co-clinical setting.


2017 ◽  
Vol 35 (15_suppl) ◽  
pp. 9023-9023
Author(s):  
Nitin Roper ◽  
Tapan K Maity ◽  
Shaojian Gao ◽  
Abhilash Karavattu Venugopalan ◽  
Xu Zhang ◽  
...  

9023 Background: Intratumor heterogeneity has been characterized among multiple cancer types. In lung adenocarcinoma, APOBEC-mutagenesis has been shown to be a source of heterogeneity. However, these data are largely limited to early stage primary tumors. There is limited information about the role of APOBEC-mutagenesis and somatic variants, copy number changes, transcript and protein expression in influencing tumor heterogeneity in metastatic lung adenocarcinoma and other thoracic tumors. Methods: We applied whole exome sequencing, RNA-seq, OncoScan CNV and mass spectrometry-based proteomic analyses on 46 tumor regions from metastatic sites including lung, liver and kidney, obtained by rapid/warm autopsy from 4 patients (pts) with stage IV lung adenocarcinoma, 1 pt each with pleural mesothelioma and thymic carcinoma. The autopsy procedure was initiated between 2-4 hours of death. Results: All tumors displayed organ-specific, branched evolution that was consistent across exome, transcriptome and proteomic analyses. The degree of heterogeneity at the genomic and proteomic level was patient-specific. There was extensive heterogeneity within the tumors of one of four patients with lung adenocarcinoma and in the thymic carcinoma patient (both non-smokers) with multiple driver mutations and copy number changes occurring in only some of the tumors suggesting ongoing late tumor evolution. Further examination of the heterogenous thymic and lung adenocarcinoma tumors showed strong enrichment with the APOBEC-mutagenesis pattern and high associated levels of APOBEC3B mRNA. Conclusions: Metastatic lung adenocarcinoma, thymic carcinoma and mesothelioma evolve through a branched, organ-specific process with marked differences in the acquisition of significant driver mutations and copy number changes. APOBEC3B is a potential driver of heterogeneity in pts with advanced, heterogeneous metastatic lung adenocarcinoma and thymic carcinoma and needs to be evaluated further.


2017 ◽  
Vol 24 (3) ◽  
pp. 119-125 ◽  
Author(s):  
Maria Santa Rocca ◽  
Andrea Di Nisio ◽  
Arianna Marchiori ◽  
Marco Ghezzi ◽  
Giuseppe Opocher ◽  
...  

Testicular germ cell tumor (TGCT) is one of the most heritable forms of cancer. In last years, many evidence suggested that constitutional genetic factors, mainly single nucleotide polymorphisms, can increase its risk. However, the possible contribution of copy number variations (CNVs) in TGCT susceptibility has not been substantially addressed. Indeed, an increasing number of studies have focused on the effect of CNVs on gene expression and on the role of these structural genetic variations as risk factors for different forms of cancer. E2F1 is a transcription factor that plays an important role in regulating cell growth, differentiation, apoptosis and response to DNA damage. Therefore, deficiency or overexpression of this protein might significantly influence fundamental biological processes involved in cancer development and progression, including TGCT. We analyzed E2F1 CNVs in 261 cases with TGCT and 165 controls. We found no CNVs in controls, but 17/261 (6.5%) cases showed duplications in E2F1. Blot analysis demonstrated higher E2F1 expression in testicular samples of TGCT cases with three copies of the gene. Furthermore, we observed higher phosphorylation of Akt and mTOR in samples with E2F1 duplication. Interestingly, normal, non-tumoral testicular tissue in patient with E2F1 duplication showed lower expression of E2F1 and lower AKT/mTOR phosphorylation with respect to adjacent tumor tissue. Furthermore, increased expression of E2F1 obtained in vitro in NTERA-2 testicular cell line induced increased AKT/mTOR phosphorylation. This study suggests for the first time an involvement of E2F1 CNVs in TGCT susceptibility and supports previous preliminary data on the importance of AKT/mTOR signaling pathway in this cancer.


2017 ◽  
Vol 35 (15_suppl) ◽  
pp. e23207-e23207
Author(s):  
Jacopo Nanni ◽  
Giovanni Marconi ◽  
Maria Chiara Fontana ◽  
Cristina Papayannidis ◽  
Silvia Lo Monaco ◽  
...  

e23207 Background: Nowadays, Acute Promyelocytic Leukemia (APL) is a disease entity with a very high rate of cure and an estimated 2-year overall survival of 97%. Early death, rather than resistant disease so common in all other subtypes of AML, has emerged as the major cause of treatment failure, and relapse is a very rare occurrence. Methods : We collected data of all the APL referred to our institution from 2014. Within 23 patients, we encountered 20 new diagnosis and 2 relapse of APL. We analyzed blasts in samples obtained from Bone Marrow with Single Nucleotide Polymorphisms Array Cytoscan HD. Results: We compared copy number alterations in both relapsed patients with alterations detected in the pool of 20 newly diagnosed APL and we found specific signatures of CNVs for each patient. There were several copy number alterations related to each patient: the first patient presented gain of ROBO2, GRIP1, CTNNB1, SOX6, PBX1, GRIK2, CDKAL1 and loss FAF1, CREBBP, SBF1; the second patient presented gain of ROBO1, MAPK10, CADPS2, APBA1 and loss of GRIP1 and MYB. Subsequently we focused our attention on ROBO and GRIP1genes because they were alterated in both relapsed patients: ROBO proteins are associated to K channels while GRIP1 is involved in various critical functions, for example in androgen receptor binding, beta-catenin binding, glucocorticoid receptor binding, and it is also a regulator of glutamate metabolism, a well-known pathway in Leukemic Stem Cells. Conclusions: APL relapse is a very rare entity, and it is announced to become rarer with the advances in first line therapy. Molecular characteristics are hard to analyze without an effort to collect and bank samples together from multiple institutions. Since relapses, especially relapses out of follow-up period, represent a sudden life-treating condition for patients, to predict patients at higher risk of relapse we selected two candidate genes that could be involved in pathways favoring relapse. By the analysis of ROBO 1-2 and GRIP1 at the diagnosis of APL we could establish a different and strict follow-up program for patients with these alterations. Acknowledgement: ELN,AIL,AIRC,prog. Regione-Università 2010-12 (L. Bolondi), FP7 NGS-PTL project,HARMONY.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1586-1586
Author(s):  
Thomas Ippolito ◽  
Rodney R. Miles ◽  
Vladimir Rodic ◽  
Cory Mavis ◽  
Francisco J. Hernandez-Ilizaliturri ◽  
...  

Abstract Background: Copy number gain and/or MYC induction leads to increased expression of miRs in the miR-17~92 cluster. Development of Burkitt lymphoma (BL) is associated with translocation of MYC resulting in MYC expression and frequent recurrent copy number gains of chromosome 13q containing the miR-17~92 cluster of miRs. MiRs in the miR-17-92 cluster, including miR19 and miR17, have been associated with B-cell lymphomagenesis. Copy number gain of 13q and high expression of miR-17 have also been associated with possible inferior outcome in children with BL. MiR-17~92 miRs can decrease expression of the PI3K inhibiting protein PTEN leading to activation of the PI3K/AKT pathway, a pathway implicated in BL lymphomagenesis. These miRs also target the pro-apoptotic protein BIM, suppression of which has also been associated with chemoresistance in BL. Objectives: Investigate the in vitro effect of altered miR-17-92 expression on chemoresponsiveness in BL cells. Methods: MiR expression was determined by qPCR. The miR-17-92 locus was deleted in Raji cells using custom CRISPR-Cas9 lentiviral vectors. Single cell-derived clones, R5 and R24, were established and locus deletion determined by genomic DNA PCR. Protein expression and Caspase cleavage was assessed by western blotting. Apoptosis induction was determined by flow cytometry for Annexin V-propidium iodide staining. Cell viability following exposure to chemotherapy was determined by AlamarBlue assay. SCID mice were inoculated with Raji or R24 cells by tail vein injection and survival determined by Kaplan-Meier analysis. Hind limb paralysis was used as an end-point for survival. Antagomir targeting miR17 was transduced into Raji cells by electroporation. Results: Chemotherapy resistant Raji 4RH cells exhibit increased miR17 and miR19 expression and increased PI3K/AKT pathway activation compared to parental Raji. R5 and R24 Raji KO lines exhibit decreased miR17 and miR19 expression and increased expression of miR targets PTEN and BIM. When xenografted into SCID mice, R24 cells demonstrated a significant prolongation in survival compared to Raji (Raji vs R24: median 29 days vs not reached at 150 days, P<0.05) (Figure 1B). A significant decrease in [IC50] in R24 cells compared to Raji was observed following 48h exposure to doxorubicin (Raji vs. R24: 65±23nM vs 12±2nM), dexamethasone (1579±10e5nM vs 49±57nM), etoposide (571±106nM vs 106±22nM) or cisplatin (2.5±0.7uM vs 0.96±0.3uM) (Figure 1A). Raji R24 cells also demonstrate an increase in apoptosis induction following exposure to doxorubicin or etoposide. To investigate the effect of direct miR targeting, Raji cells were transfected with an antagomir targeting miR17 resulting in decreased viability following exposure to doxorubicin or cisplatin compared to Raji cells transfected with a control oligomer (Figure 1C). Antagomir transfected Raji cells express higher levels of PTEN and BIM compared to control Raji cells. Conclusion: High expression of miR17-92 cluster miRs is associated with in vitro chemotherapy resistance. Knockout of the MIR17HG gene in BL cells results in impaired proliferation, impaired in vivo engraftement with prolonged survival in SCID mice and increased in vitro chemoresponsiveness associated with an increase in expression of PTEN and BIM. Targeting of miR17 using an antagomir approach resulted in increased PTEN and BIM and increased chemoresponsiveness. These findings highlight the role of MYC-associated miRs in in vitro chemoresistance in BL cells warranting continued investigation as a possible therapeutic target for relapsed/refractory BL. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Yue Wang ◽  
Tao Shi ◽  
Xuan Wang ◽  
Jinwei Hu ◽  
Lixia Yu ◽  
...  

Abstract Background Poorly cohesive (PC) is a unique histologic subtype of gastric cancer (GC), with an increasing incidence in recent years. However, the molecular characteristics and therapeutic targets of PC GC are not yet well studied and there are no effective therapies for these patients. Methods Formalin fixed paraffin embedded (FFPE) samples of 556 GC patients, including 64 PC GC, were collected for next-generation sequencing (NGS). Clinical characteristics and genomic profiling were analyzed. FGFR2 expression was detected by quantitative real time polymerase chain reaction (qRT-PCR) and immunohistochemistry (IHC). FGFR2 inhibitors response was studied in vitro. Results Among 556 GC patients, PC GC patients were younger (P = 0.004), had lower tumor mutation burden (TMB-L) (P = 0.001) than non-PC GC. The top 10 most frequently mutated genes in PC GC were TP53 (48%), CDH1 (31%), ARID1A (14%), FGFR2 (14%), ERBB2 (9%), CDKN2A (9%), FGF3 (8%), LRP1B (9%), FGF19 (8%) and FGF4 (8%). Noticeably, FGFR2 is more frequently mutated than non-PC GC (14% vs. 6%, P = 0.037), including copy number variants (CNVs, 12.5%) and gene rearrangements (3.1%, FGFR2/VTI1A and FGFR2/TACC2). Former studies have confirmed that gain of copy number could increase FGFR2 expression and sensitivity to FGFR2 inhibitors in GC. However, no research has verified the function of FGFR2 rearrangements in GC. Our results showed that cell lines of GC transfected with TACC2-FGFR2 fusion had increased mRNA and protein expression of FGFR2, and were more sensitive to FGFR2 inhibitors. FGFR2 inhibitors might be a new therapeutic target for PC GC. In addition, we found patients of PC GC harboring gene rearrangements (n = 9) had poorer overall survival (OS) in comparison with patients without any gene rearrangement (n = 19) (16.0 months vs 21.0 months, P = 0.043). Gene rearrangement might be an adverse prognostic factor for PC GC patients. Conclusions FGFR2 alterations were recurrent in PC GC and FGFR2 inhibitors might be a new therapeutic target for PC GC.


1970 ◽  
Vol 39 (2) ◽  
pp. 207-214
Author(s):  
Nazma Akter ◽  
RH Sarker ◽  
MI Hoque

DOI: 10.3329/bjb.v39i2.7490Bangladesh J. Bot. 39(2): 207-214, 2010 (December)


Blood ◽  
2019 ◽  
Vol 133 (13) ◽  
pp. 1436-1445 ◽  
Author(s):  
Jyoti Nangalia ◽  
Emily Mitchell ◽  
Anthony R. Green

Abstract Interrogation of hematopoietic tissue at the clonal level has a rich history spanning over 50 years, and has provided critical insights into both normal and malignant hematopoiesis. Characterization of chromosomes identified some of the first genetic links to cancer with the discovery of chromosomal translocations in association with many hematological neoplasms. The unique accessibility of hematopoietic tissue and the ability to clonally expand hematopoietic progenitors in vitro has provided fundamental insights into the cellular hierarchy of normal hematopoiesis, as well as the functional impact of driver mutations in disease. Transplantation assays in murine models have enabled cellular assessment of the functional consequences of somatic mutations in vivo. Most recently, next-generation sequencing–based assays have shown great promise in allowing multi-“omic” characterization of single cells. Here, we review how clonal approaches have advanced our understanding of disease development, focusing on the acquisition of somatic mutations, clonal selection, driver mutation cooperation, and tumor evolution.


Author(s):  
Wen-Dai Bao ◽  
Pei Pang ◽  
Xiao-Ting Zhou ◽  
Fan Hu ◽  
Wan Xiong ◽  
...  

AbstractIron homeostasis disturbance has been implicated in Alzheimer’s disease (AD), and excess iron exacerbates oxidative damage and cognitive defects. Ferroptosis is a nonapoptotic form of cell death dependent upon intracellular iron. However, the involvement of ferroptosis in the pathogenesis of AD remains elusive. Here, we report that ferroportin1 (Fpn), the only identified mammalian nonheme iron exporter, was downregulated in the brains of APPswe/PS1dE9 mice as an Alzheimer’s mouse model and Alzheimer’s patients. Genetic deletion of Fpn in principal neurons of the neocortex and hippocampus by breeding Fpnfl/fl mice with NEX-Cre mice led to AD-like hippocampal atrophy and memory deficits. Interestingly, the canonical morphological and molecular characteristics of ferroptosis were observed in both Fpnfl/fl/NEXcre and AD mice. Gene set enrichment analysis (GSEA) of ferroptosis-related RNA-seq data showed that the differentially expressed genes were highly enriched in gene sets associated with AD. Furthermore, administration of specific inhibitors of ferroptosis effectively reduced the neuronal death and memory impairments induced by Aβ aggregation in vitro and in vivo. In addition, restoring Fpn ameliorated ferroptosis and memory impairment in APPswe/PS1dE9 mice. Our study demonstrates the critical role of Fpn and ferroptosis in the progression of AD, thus provides promising therapeutic approaches for this disease.


Sign in / Sign up

Export Citation Format

Share Document