scholarly journals CSIG-16. RECONCILING TUMOR HETEROGENEITY IN GLIOBLASTOMA USING A PATHWAY-BASED APPROACH

2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi47-vi47
Author(s):  
Alvaro Alvarado ◽  
Riki Kawaguchi ◽  
Giovanni Coppola ◽  
Steven Goldman ◽  
Harley Kornblum

Abstract Despite efforts to gain a deeper understanding of its molecular architecture, glioblastoma (GBM) remains uniformly fatal. While genome-based molecular subtyping has revealed that GBMs may be parsed into several distinct molecular categories, this insight has yielded little progress towards extending patient survival. In particular, the great phenotypic heterogeneity of GBM – both inter and intratumorally – has hindered therapeutic efforts. To this end, we interrogated tumor samples using a pathway-based approach to resolve tumoral heterogeneity. Gene set enrichment analysis (GSEA) was applied to gene expression data and used to provide an overview of each sample that was then compared to others, generating sample clusters based on overall patterns of enrichment. The Cancer Genome Atlas (TCGA) samples were clustered using canonical and oncogenic signatures and in both cases the clustering was distinct from the molecular subtypes previously reported. Using principal component analysis (PCA) and other bioinformatics tools, we extracted gene sets to further characterize the pathways contributing to each of these clusters. We generated gene lists of the top common elements and Ingenuity pathway analysis exposed molecular targets that control critical pathways of each identified cluster. Similar analyses were completed in a gene expression database of patient-derived gliomasphere lines and molecular targets were also obtained. We found E2F1 to be a strong target based on gene lists from both databases. A cluster of gliomasphere lines have high enrichment scores for the gene list predicted to depend on E2F1. In vitro genetic perturbation showed decrease stem cell frequency and lower expression of cell cycle progression genes in cell lines from this cluster exclusively. Other cluster-specific targets are being validated and in vivo studies will follow momentarily. Our studies relate intertumoral heterogeneity to critical cellular pathways dysregulated in GBM, with the ultimate goal of establishing a pipeline for patient- and tumor-specific precision medicine.

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Ying Xie ◽  
Xiaofeng Hang ◽  
Wensheng Xu ◽  
Jing Gu ◽  
Yuanjing Zhang ◽  
...  

Abstract Background Most of the biological functions of circular RNAs (circRNAs) and the potential underlying mechanisms in hepatocellular carcinoma (HCC) have not yet been discovered. Methods In this study, using circRNA expression data from HCC tumor tissues and adjacent tissues from the Gene Expression Omnibus database, we identified out differentially expressed circRNAs and verified them by qRT-PCT. Functional experiments were performed to evaluate the effects of circFAM13B in HCC in vitro and in vivo. Results We found that circFAM13B was the most significantly differentially expressed circRNA in HCC tissue. Subsequently, in vitro and in vivo studies also demonstrated that circFAM13B promoted the proliferation of HCC. Further studies revealed that circFAM13B, a sponge of miR-212, is involved in the regulation of E2F5 gene expression by competitively binding to miR-212, inhibits the activation of the P53 signalling pathway, and promotes the proliferation of HCC cells. Conclusions Our findings revealed the mechanism underlying the regulatory role played by circFAM13B, miR-212 and E2F5 in HCC. This study provides a new theoretical basis and novel target for the clinical prevention and treatment of HCC.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii28-ii28
Author(s):  
Alvaro Alvarado ◽  
Kaleab Tessema ◽  
Kunal Patel ◽  
Riki Kawaguchi ◽  
Richard Everson ◽  
...  

Abstract Despite efforts to gain a deeper understanding of its molecular architecture, glioblastoma (GBM) remains uniformly fatal. While genome-based molecular subtyping has revealed that GBMs may be parsed into several molecularly distinct categories, this insight has yielded little progress towards extending patient survival. In particular, the great phenotypic heterogeneity of GBM – both inter and intratumorally – has hindered therapeutic efforts. To this end, we interrogated tumor samples using a pathway-based approach to resolve tumoral heterogeneity. Gene set enrichment analysis (GSEA) was applied to gene expression data and used to provide an overview of each sample that can be compared to other samples by generating sample clusters based on overall patterns of enrichment. The Cancer Genome Atlas (TCGA) samples were clustered using the canonical and oncogenic signatures and in both cases the clustering was distinct from the molecular subtype previously reported and clusters were informative of patient survival. We also analyzed single cell RNA sequencing datasets and uniformly found two clusters of cells enriched for cell cycle regulation and survival pathways. We have validated our approach by generating gene lists from common elements found in the top contributing genesets for a particular cluster and testing the top targets in appropriate gliomasphere patient-derived lines. Samples enriched for cell cycle related genesets showed a decrease in sphere formation capacity when E2F1, out top target, was silenced and when treated with fulvestrant and calcitriol, which were identified as potential drugs targeting this genelist. Conversely, no changes were observed in samples not enriched for this gene list. Finally, we interrogated spatial heterogeneity and found higher enrichment of the proliferative signature in contrast enhancing compared with non-enhancing regions. Our studies relate inter- and intratumoral heterogeneity to critical cellular pathways dysregulated in GBM, with the ultimate goal of establishing a pipeline for patient- and tumor-specific precision medicine.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kornphimol Kulthong ◽  
Guido J. E. J. Hooiveld ◽  
Loes Duivenvoorde ◽  
Ignacio Miro Estruch ◽  
Victor Marin ◽  
...  

AbstractGut-on-chip devices enable exposure of cells to a continuous flow of culture medium, inducing shear stresses and could thus better recapitulate the in vivo human intestinal environment in an in vitro epithelial model compared to static culture methods. We aimed to study if dynamic culture conditions affect the gene expression of Caco-2 cells cultured statically or dynamically in a gut-on-chip device and how these gene expression patterns compared to that of intestinal segments in vivo. For this we applied whole genome transcriptomics. Dynamic culture conditions led to a total of 5927 differentially expressed genes (3280 upregulated and 2647 downregulated genes) compared to static culture conditions. Gene set enrichment analysis revealed upregulated pathways associated with the immune system, signal transduction and cell growth and death, and downregulated pathways associated with drug metabolism, compound digestion and absorption under dynamic culture conditions. Comparison of the in vitro gene expression data with transcriptome profiles of human in vivo duodenum, jejunum, ileum and colon tissue samples showed similarities in gene expression profiles with intestinal segments. It is concluded that both the static and the dynamic gut-on-chip model are suitable to study human intestinal epithelial responses as an alternative for animal models.


Nutrients ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 123
Author(s):  
Natalia K. Kordulewska ◽  
Justyna Topa ◽  
Małgorzata Tańska ◽  
Anna Cieślińska ◽  
Ewa Fiedorowicz ◽  
...  

Lipopolysaccharydes (LPS) are responsible for the intestinal inflammatory reaction, as they may disrupt tight junctions and induce cytokines (CKs) secretion. Osthole has a wide spectrum of pharmacological effects, thus its anti-inflammatory potential in the LPS-treated Caco-2 cell line as well as in Caco-2/THP-1 and Caco-2/macrophages co-cultures was investigated. In brief, Caco-2 cells and co-cultures were incubated with LPS to induce an inflammatory reaction, after which osthole (150–450 ng/mL) was applied to reduce this effect. After 24 h, the level of secreted CKs and changes in gene expression were examined. LPS significantly increased the levels of IL-1β, -6, -8, and TNF-α, while osthole reduced this effect in a concentration-dependent manner, with the most significant decrease when a 450 ng/mL dose was applied (p < 0.0001). A similar trend was observed in changes in gene expression, with the significant osthole efficiency at a concentration of 450 ng/μL for IL1R1 and COX-2 (p < 0.01) and 300 ng/μL for NF-κB (p < 0.001). Osthole increased Caco-2 monolayer permeability, thus if it would ever be considered as a potential drug for minimizing intestinal inflammatory symptoms, its safety should be confirmed in extended in vitro and in vivo studies.


2020 ◽  
Vol 16 (25) ◽  
pp. 1921-1930
Author(s):  
Zhou Xu ◽  
Lin Zhuang ◽  
Xiaoyin Wang ◽  
Qianrong Li ◽  
Yan Sang ◽  
...  

Aim: To explore FBXW7 protein-coding transcript isoform (α, β and γ) expression, their functions and prognostic value in ovarian serous cystadenocarcinoma (OSC). Materials & methods: FBXW7 transcript data were collected from The Cancer Genome Atlas and the Genotype-Tissue Expression project. IOSE, A2780 and SKOV3 cells were used for in vitro and in vivo studies. Results: FBXW7α and FBXW7γ are dominant protein-coding transcripts that were downregulated in OSC. FBXW7γ overexpression reduced the protein expression of c-Myc, Notch1 and Yap1 and suppressed OSC cell growth in vitro and in vivo. FBXW7γ expression was an independent indicator of longer disease-specific survival (HR: 0.588; 95% CI: 0.449–0.770) and progression-free survival (HR: 0.708; 95% CI: 0.562–0.892). Conclusion: FBXW7γ is a tumor-suppressive and might be the only prognosis-related FBXW7 transcript in OSC.


Animals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3286
Author(s):  
Purichaya Disbanchong ◽  
Wichayaporn Punmanee ◽  
Anyaphat Srithanasuwan ◽  
Noppason Pangprasit ◽  
Kanruethai Wongsawan ◽  
...  

Herbal phytochemicals featuring active ingredients including quercetin and curcumin have shown potential in treating human and animal diseases. The current study investigated their potential function in vitro for host immunomodulation associated with Streptococcus agalactiae subclinical bovine mastitis via milk-isolated neutrophils. Our results showed a positive influence on cellular migration, reactive oxygen species (ROS) generation, phagocytosis, and bacterial killing as well as neutrophil extracellular traps (NETs) release. This study also highlighted several important molecular aspects of quercetin and curcumin in milk-isolated neutrophils. Gene expression analyses by RT-PCR revealed significant changes in the expression of proinflammatory cytokines (IL1B, IL6, and TNF), ROS (CYBA), phagocytosis (LAMP1), and migration (RAC). The expression levels of apoptotic genes or proteins in either pro-apoptosis (CASP3 and FAS) or anti-apoptosis (BCL2, BCL2L1, and CFLAR) were significantly manipulated by the effects of either quercetin or curcumin. A principal component analysis (PCA) identified the superior benefit of quercetin supplementation for increasing both cellular and molecular functions in combating bacterial mastitis. Altogether, this study showed the existing and potential benefits of these test compounds; however, they should be explored further via in vivo studies.


2018 ◽  
Author(s):  
Nikita Mukhitov ◽  
Michael G. Roper

AbstractIn vivo levels of insulin are oscillatory with a period of ~5-10 minutes, implying that the numerous islets of Langerhans within the pancreas are synchronized. While the synchronizing factors are still under investigation, one result of this behavior is expected to be coordinated intracellular [Ca2+] ([Ca2+]i) oscillations throughout the islet population. The role that coordinated [Ca2+]i oscillations have on controlling gene expression within pancreatic islets was examined by comparing gene expression levels in islets that were synchronized using a low amplitude glucose wave and an unsynchronized population. The [Ca2+]i oscillations in the synchronized population were homogeneous and had a significantly lower drift in their oscillation period as compared to unsynchronized islets. This reduced drift in the synchronized population was verified by comparing the drift of in vivo and in vitro profiles from published reports. Microarray profiling indicated a number of Ca2+-dependent genes were differentially regulated between the two islet populations. Gene set enrichment analysis revealed that the synchronized population had reduced expression of gene sets related to protein translation, protein turnover, energy expenditure, and insulin synthesis, while those that were related to maintenance of cell morphology were increased. It is speculated that these gene expression patterns in the synchronized islets results in a more efficient utilization of intra-cellular resources and response to environmental changes.


2020 ◽  
Author(s):  
Zhenhua Yin ◽  
Dejun Wu ◽  
Jianping Shi ◽  
Xiyi Wei ◽  
Nuyun Jin ◽  
...  

Abstract Background: Extensive research has revealed that genes play a pivotal role in tumor development and growth. However, the underlying involvement of gene expression in gastric carcinoma (GC) remains to be investigated further.Methods: In this study, we identified overlapping differentially expressed genes (DEGs) by comparing tumor tissue with adjacent normal tissue using the Gene Expression Omnibus (GEO) and the Cancer Genome Atlas (TCGA) database.Results: Our analysis identified 79 up-regulated and ten down-regulated genes. Functional enrichment analysis and prognosis analysis were conducted on the identified genes, and the fatty aldehyde dehydrogenase (FALDH) gene, ALDH3A2, was chosen for more detailed analysis. We performed Gene Set Enrichment Analysis (GSEA) and immunocorrelation analysis (infiltration, copy number alterations, and checkpoints) to elucidate the mechanisms of action of ALDH3A2 in depth. The immunohistochemical (IHC) result based on 140 paraffin-embedded human GC samples indicated that ALDH3A2 was over-expressed in low-grade GC cases and the OS of patients with low expression of ALDH3A2 was significantly shorter than those with high ALDH3A2 expression. In vitro results indicated that the expression of ALDH3A2 was negatively correlated with PDCD1, PDCD1LG2, and CTLA-4.Conclusion: We conclude that ALDH3A2 might be useful as a potential reference value for the relief and immunotherapy of GC, and also as an independent predictive marker for the prognosis of GC.


2014 ◽  
Vol 26 (1) ◽  
pp. 117 ◽  
Author(s):  
L. Cox ◽  
G. Saunders ◽  
J. Stevens ◽  
S. C. Isom

In vitro-matured (IVM) oocytes lack the same developmental competence as oocytes that are matured in vivo (IVV), yet no compelling explanation for this discrepancy has been provided at the molecular level. The aim of this study was to quantify and compare mRNA levels in IVM and IVV oocytes for genes from a wide variety of functional gene categories, including RNA degradation, pluripotency, epigenome modification, oocyte-specific, and apoptosis. Quantitative real-time PCR (qPCR) was used to evaluate the relative gene expression levels of 70 genes in each of 33 individual IVM oocytes from 4 different collection days and 29 individual IVV oocytes from 4 different donor animals. The qPCR data were analysed using ANOVA and significance was assigned at P < 0.05. After a multiple testing correction was applied, relative transcript abundances for 32 of the 70 genes tested were found to be significantly different (q < 0.05) between the IVM and IVV oocytes. Of these significantly different genes, 23 were higher in the IVM oocytes and only 9 were higher in the IVV oocytes. The 32 significantly differentially expressed genes were then evaluated in relation to their corresponding functional gene categories. Of particular interest, transcripts for 7/14 RNA degradation-related genes (CNOT3, DCP1A, DDX6, LSM1, PABPN1, PABPN1L, PARN) and 3/9 oocyte specific genes (BMP15, YBX2, H1FOO) were significantly more abundant in the IVM oocytes. In contrast, transcripts for 4/8 epigenetic related transcripts (ASH2l, DNMT1, EHMT2, EZH2), 2/2 apoptosis related genes (BCL2, XIAP), and 1/4 pluripotency factors (LIN28) were significantly more abundant in the IVV oocytes. Gene set enrichment analysis confirmed that, within the context of this experimental design, RNA degradation and chromatin remodelling pathways are significantly perturbed in IVM oocytes. We conclude that in vitro maturation has profound effects on transcript populations of metaphase-II oocytes, with most transcripts being higher in IVM oocytes. We expect that this data will lead to a better understanding of how we can improve the quality of oocytes that are matured in vitro as well as provide information to help to identify markers that could be indicative of oocyte quality.


2007 ◽  
Vol 292 (1) ◽  
pp. G315-G322 ◽  
Author(s):  
C. Caballero-Franco ◽  
K. Keller ◽  
C. De Simone ◽  
K. Chadee

Several studies have stressed the importance of the microbiota in the maintenance of the gastrointestinal epithelium. Administration of probiotic bacteria, supplements composed of microbiota constituents, was previously shown to diminish symptoms in patients suffering from inflammatory bowel diseases. This raises the possibility that probiotics may play an active role in enhancing the intestinal barrier at the mucosal surface. In this study, we investigated whether the clinically tested VSL#3 probiotic formula and/or its secreted components can augment the protective mucus layer in vivo and in vitro. For in vivo studies, Wistar rats were orally administered the probiotic mixture VSL#3 on a daily basis for seven days. After treatment, basal luminal mucin content increased by 60%. In addition, we exposed isolated rat colonic loops to the VSL#3 probiotic formula, which significantly stimulated colonic mucin (MUC) secretion and MUC2 gene expression; however, MUC1 and MUC3 gene expression were only slightly elevated. The effect of the VSL#3 mucin secretagogue was also tested in vitro by use of LS 174T colonic epithelial cells. In contrast to the animal studies, cultured cells incubated with VSL#3 bacteria did not exhibit increased mucin secretion. However, the bacterial secreted products contained in the conditioned media stimulated a remarkable mucin secretion effect. Among the three bacterial groups ( Lactobacilli, Bifidobacteria, and Streptococci) contained in VSL#3, the Lactobacillus species were the strongest potentiator of mucin secretion in vitro. A preliminary characterization of the putative mucin secretagogue suggested that it was a heat-resistant soluble compound, which is not sensitive to protease and DNase treatment. These findings contribute to a better understanding of the complex and beneficial interaction between colonic epithelial cells and intestinal bacteria.


Sign in / Sign up

Export Citation Format

Share Document