scholarly journals Receptor-driven invasion profiles in diffuse intrinsic pontine glioma (DIPG)

Author(s):  
Anju Karki ◽  
Noah E Berlow ◽  
Jin-Ah Kim ◽  
Esther Hulleman ◽  
Qianqian Liu ◽  
...  

Abstract Background Diffuse intrinsic pontine glioma (DIPG) is a devastating pediatric cancer with unmet clinical need. DIPG is invasive in nature, where tumor cells interweave into the fiber nerve tracts of the pons making the tumor unresectable. Accordingly, novel approaches in combating the disease is of utmost importance and receptor-driven cell invasion in the context of DIPG is under-researched area. Here we investigated the impact on cell invasion mediated by PLEXINB1, PLEXINB2, platelet growth factor receptor (PDGFR)α, PDGFRβ, epithelial growth factor receptor (EGFR), activin receptor 1 (ACVR1), chemokine receptor 4 (CXCR4) and NOTCH1. Methods We used previously published RNA-sequencing data to measure gene expression of selected receptors in DIPG tumor tissue versus matched normal tissue controls (n=18). We assessed protein expression of the corresponding genes using DIPG cell culture models. Then, we performed cell viability and cell invasion assays of DIPG cells stimulated with chemoattractants/ligands. Results RNA-sequencing data showed increased gene expression of receptor genes such as PLEXINB2, PDGFRα, EGFR, ACVR1, CXCR4 and NOTCH1 in DIPG tumors compared to the control tissues. Representative DIPG cell lines demonstrated correspondingly increased protein expression levels of these genes. Cell viability assays showed minimal effects of growth factors/chemokines on tumor cell growth in most instances. Recombinant SEMA4C, SEM4D, PDGF-AA, PDGF-BB, ACVA, CXCL12 and DLL4 ligand stimulation altered invasion in DIPG cells. Conclusions We show that no single growth factor-ligand pair universally induces DIPG cell invasion. However, our results reveal a potential to create a composite of cytokines or anti-cytokines to modulate DIPG cell invasion.

2010 ◽  
Vol 28 (13) ◽  
pp. 2174-2180 ◽  
Author(s):  
Rafal Dziadziuszko ◽  
Daniel T. Merrick ◽  
Samir E. Witta ◽  
Adelita D. Mendoza ◽  
Barbara Szostakiewicz ◽  
...  

PurposeThe purpose of this study was to characterize insulin-like growth factor-1 receptor (IGF1R) protein expression, mRNA expression, and gene copy number in surgically resected non–small-cell lung cancers (NSCLC) in relation to epidermal growth factor receptor (EGFR) protein expression, patient characteristics, and prognosis.Patients and MethodsOne hundred eighty-nine patients with NSCLC who underwent curative pulmonary resection were studied (median follow-up, 5.3 years). IGF1R protein expression was evaluated by immunohistochemistry (IHC) with two anti-IGF1R antibodies (n = 179). EGFR protein expression was assessed with PharmDx kit. IGF1R gene expression was evaluated using quantitative reverse transcription polymerase chain reaction (qRT-PCR) from 114 corresponding fresh-frozen samples. IGF1R gene copy number was assessed by fluorescent in situ hybridization using customized probes (n = 181).ResultsIGF1R IHC score was higher in squamous cell carcinomas versus other histologies (P < .001) and associated with stage (P = .03) but not survival (P = .46). IGF1R and EGFR protein expression showed significant correlation (r = 0.30; P < .001). IGF1R gene expression by qRT-PCR was higher in squamous cell versus other histologies (P = .006) and did not associate with other clinical features nor survival (P = .73). Employing criteria previously established for EGFR copy number, patients with IGF1R amplification/high polysomy (n = 48; 27%) had 3-year survival of 58%, patients with low polysomy (n = 87; 48%) had 3-year survival of 47% and patients with trisomy/disomy (n = 46; 25%) had 3-year survival of 35%, respectively (P = .024). Prognostic value of high IGF1R gene copy number was confirmed in multivariate analysis.ConclusionIGF1R protein expression is higher in squamous cell versus other histologies and correlates with EGFR expression. IGF1R protein and gene expression does not associate with survival, whereas high IGF1R gene copy number harbors positive prognostic value.


2010 ◽  
Vol 28 (31) ◽  
pp. 4762-4768 ◽  
Author(s):  
Alberto Broniscer ◽  
Justin N. Baker ◽  
Michael Tagen ◽  
Arzu Onar-Thomas ◽  
Richard J. Gilbertson ◽  
...  

Purpose To evaluate the safety, maximum-tolerated dose, pharmacokinetics, and pharmacodynamics of vandetanib, an oral vascular endothelial growth factor receptor 2 (VEGFR2) and epidermal growth factor receptor inhibitor, administered once daily during and after radiotherapy in children with newly diagnosed diffuse intrinsic pontine glioma. Patients and Methods Radiotherapy was administered as 1.8-Gy fractions (total cumulative dose of 54 Gy). Vandetanib was administered concurrently with radiotherapy for a maximum of 2 years. Dose-limiting toxicities (DLTs) were evaluated during the first 6 weeks of therapy. Pharmacokinetic studies were obtained for all patients. Plasma angiogenic factors and VEGFR2 phosphorylation in mononuclear cells were analyzed before and during therapy. Results Twenty-one patients were administered 50 (n = 3), 65 (n = 3), 85 (n = 3), 110 (n = 6), and 145 mg/m2 (n = 6) of vandetanib. Only one patient developed DLT (grade 3 diarrhea) at dosage level 5. An expanded cohort of patients were treated at dosage levels 4 (n = 10) and 5 (n = 4); two patients developed grade 4 hypertension and posterior reversible encephalopathy syndrome while also receiving high-dose dexamethasone. Despite significant interpatient variability, exposure to vandetanib increased with higher dosage levels. The bivariable analysis of vascular endothelial growth factor (VEGF) before and during therapy showed that patients with higher levels of VEGF before therapy had a longer progression-free survival (PFS; P = .022), whereas patients with increases in VEGF during treatment had a shorter PFS (P = .0015). VEGFR2 phosphorylation was inhibited on day 8 or 29 of therapy compared with baseline (P = .039). Conclusion The recommended phase II dose of vandetanib in children is 145 mg/m2 per day. Close monitoring and management of hypertension is required, particularly for patients receiving corticosteroids.


PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0256416
Author(s):  
Keller J. Toral ◽  
Mark A. Wuenschel ◽  
Esther P. Black

The identification of novel therapies, new strategies for combination of therapies, and repurposing of drugs approved for other indications are all important for continued progress in the fight against lung cancers. Antibodies that target immune checkpoints can unmask an immunologically hot tumor from the immune system of a patient. However, despite accounts of significant tumor regression resulting from these medications, most patients do not respond. In this study, we sought to use protein expression and RNA sequencing data from The Cancer Genome Atlas and two smaller studies deposited onto the Gene Expression Omnibus (GEO) to advance our hypothesis that inhibition of SHP-2, a tyrosine phosphatase, will improve the activity of immune checkpoint inhibitors (ICI) that target PD-1 or PD-L1 in lung cancers. We first collected protein expression data from The Cancer Proteome Atlas (TCPA) to study the association of SHP-2 and PD-L1 expression in lung adenocarcinomas. RNA sequencing data was collected from the same subjects through the NCI Genetic Data Commons and evaluated for expression of the PTPN11 (SHP-2) and CD274 (PD-L1) genes. We then analyzed RNA sequencing data from a series of melanoma patients who were either treatment naïve or resistant to ICI therapy. PTPN11 and CD274 expression was compared between groups. Finally, we analyzed gene expression and drug response data collected from 21 non-small cell lung cancer (NSCLC) patients for PTPN11 and CD274 expression. From the three studies, we hypothesize that the activity of SHP-2, rather than the expression, likely controls the expression of PD-L1 as only a weak relationship between PTPN11 and CD274 expression in either lung adenocarcinomas or melanomas was observed. Lastly, the expression of CD274, not PTPN11, correlates with response to ICI in NSCLC.


2014 ◽  
Vol 52 (2) ◽  
pp. 223-234 ◽  
Author(s):  
Noora Andersson ◽  
Mikko Anttonen ◽  
Anniina Färkkilä ◽  
Marjut Pihlajoki ◽  
Ralf Bützow ◽  
...  

Epidermal growth factor receptor (EGFR) is implicated in the progression of many human cancers, but its significance in ovarian granulosa cell tumor (GCT) pathobiology remains poorly understood. We assessed theEGFRgene copy number, surveyed the mRNA and protein expression patterns of EGFR in 90 adult GCTs, and assessed thein vitrosensitivity of GCT cells to EGFR inhibition. Low-level amplification ofEGFRgene was observed in five GCTs and high-level amplification in one sample.EGFRmRNA was robustly expressed in GCTs. Most tumors expressed both unphosphorylated and phosphorylated EGFR protein, but the protein expression did not correlate with clinical parameters, including the risk of recurrence. Small-molecule EGFR inhibitors reduced the EGF-induced activation of EGFR and its downstream signaling molecules at nanomolar doses, but cell viability was reduced, and caspase-3/7 was activated in GCT cells only at micromolar doses. Based on the present results, EGFR is active and abundantly expressed in the majority of GCTs, but probably has only minor contribution to GCT cell growth. Given the high doses of EGFR inhibitors required to reduce GCT cell viabilityin vitro, they are not likely to be effective for GCT treatment as single agents; they should rather be tested as part of combination therapies for these malignancies.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii97-ii97
Author(s):  
Diana Carvalho ◽  
Peter Richardson ◽  
Nagore Gene Olaciregui ◽  
Reda Stankunaite ◽  
Cinzia Emilia Lavarino ◽  
...  

Abstract Somatic mutations in ACVR1, encoding the serine/threonine kinase ALK2 receptor, are found in a quarter of children with the currently incurable brain tumour diffuse intrinsic pontine glioma (DIPG). Treatment of ACVR1-mutant DIPG patient-derived models with multiple inhibitor chemotypes leads to a reduction in cell viability in vitro and extended survival in orthotopic xenografts in vivo, though there are currently no specific ACVR1 inhibitors licensed for DIPG. Using an Artificial Intelligence-based platform to search for approved compounds which could be used to treat ACVR1-mutant DIPG, the combination of vandetanib and everolimus was identified as a possible therapeutic approach. Vandetanib, an approved inhibitor of VEGFR/RET/EGFR, was found to target ACVR1 (Kd=150nM) and reduce DIPG cell viability in vitro, but has been trialed in DIPG patients with limited success, in part due to an inability to cross the blood-brain-barrier. In addition to mTOR, everolimus inhibits both ABCG2 (BCRP) and ABCB1 (P-gp) transporter, and was synergistic in DIPG cells when combined with vandetanib in vitro. This combination is well-tolerated in vivo, and significantly extended survival and reduced tumour burden in an orthotopic ACVR1-mutant patient-derived DIPG xenograft model. Based on these preclinical data, three patients with ACVR1-mutant DIPG were treated with vandetanib and everolimus. These cases may inform on the dosing and the toxicity profile of this combination for future clinical studies. This bench-to-bedside approach represents a rapidly translatable therapeutic strategy in children with ACVR1 mutant DIPG.


2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii294-iii295
Author(s):  
Jovana Pavisic ◽  
Chankrit Sethi ◽  
Chris Jones ◽  
Stergios Zacharoulis ◽  
Andrea Califano

Abstract Diffuse intrinsic pontine glioma (DIPG) remains a fatal disease with no effective drugs to date. Mutation-based precision oncology approaches are limited by lack of targetable mutations and genetic heterogeneity. We leveraged systems biology methodologies to discover common targetable disease drivers—master regulator proteins (MRs)—in DIPG to expand treatment options. Using the metaVIPER algorithm, we interrogated an integrated low grade glioma and GBM gene regulatory network with 31 DIPG-gene expression signatures to identify tumor-specific MRs by differential expression of their transcriptional targets. Unsupervised clustering identified MR signatures of upregulated activity in RRM2/TOP2A in 13 patients, CD3D in 5 patients, and MMP7, TACSTD2, RAC2 and SLC15A1/SLC34A2 in individual patients, all of which can be targeted. Notably, intratumoral administration of etoposide by convection enhanced delivery was effective in murine proneural gliomas in which TOP2 was identified as a MR while RRM2—targetable by drugs such as cladribine—has been shown to be a positive regulator of glioma progression whose knock-down inhibits tumor growth. We also prioritized drugs by their ability to reverse MR-activity signatures using a large drug-perturbation database. Patients clustered by predicted drug sensitivities with distinct groups of tumors predicted to respond to proteasome inhibitors, Thiotepa or Volasertib all of which have early evidence in treating gliomas. We will refine this analysis in a multi-institutional study of &gt;100 patient gene expression profiles to define MR signatures driving known biological/molecular disease subtypes, use DIPG cell lines recapitulating common MR architectures to optimize therapy prioritization, and validate our findings in vivo.


2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii413-iii413
Author(s):  
Maggie Seblani ◽  
Markella Zannikou ◽  
Katarzyna Pituch ◽  
Liliana Ilut ◽  
Oren Becher ◽  
...  

Abstract Diffuse intrinsic pontine glioma (DIPG) is a devastating brain tumor affecting young children. Immunotherapies hold promise however the lack of immunocompetent models recreating a faithful tumor microenvironment (TME) remains a challenge for development of targeted immunotherapeutics. We propose to generate an immunocompetent DIPG mouse model through induced overexpression of interleukin 13 receptor alpha 2 (IL13Rα2), a tumor-associated antigen overexpressed by glioma cells. A model with an intact TME permits comprehensive preclinical assessment of IL13Rα2-targeted immunotherapeutics. Our novel model uses the retroviral avian leucosis and sarcoma virus (RCAS) for in vivo gene delivery leading to IL13Rα2 expression in proliferating progenitor cells. Transfected cells expressing IL13Rα2 and PDGFB, a ligand for platelet derived growth factor receptor, alongside induced p53 loss via the Cre-Lox system are injected in the fourth ventricle in postnatal pups. We validated the expression of PDGFB and IL13Rα2 transgenes in vitro and in vivo and will characterize the TME through evaluation of the peripheral and tumor immunologic compartments using immunohistochemistry and flow cytometry. We confirmed expression of transgenes via flow cytometry and western blotting. Comparison of survival dynamics in mice inoculated with PDGFB alone with PDGFB+IL13Rα2 demonstrated that co-expression of IL13Rα2 did not significantly affect mice survival compared to the PDGFB model. At time of application, we initiated experiments to characterize the TME. Preliminary data demonstrate establishment of tumors within and adjacent to the brainstem and expression of target transgenes. Preclinical findings in a model recapitulating the TME may provide better insight into outcomes upon translation to clinical application.


Sign in / Sign up

Export Citation Format

Share Document