scholarly journals Genomic data from NSCLC tumors reveals correlation between SHP-2 activity and PD-L1 expression and suggests synergy in combining SHP-2 and PD-1/PD-L1 inhibitors

PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0256416
Author(s):  
Keller J. Toral ◽  
Mark A. Wuenschel ◽  
Esther P. Black

The identification of novel therapies, new strategies for combination of therapies, and repurposing of drugs approved for other indications are all important for continued progress in the fight against lung cancers. Antibodies that target immune checkpoints can unmask an immunologically hot tumor from the immune system of a patient. However, despite accounts of significant tumor regression resulting from these medications, most patients do not respond. In this study, we sought to use protein expression and RNA sequencing data from The Cancer Genome Atlas and two smaller studies deposited onto the Gene Expression Omnibus (GEO) to advance our hypothesis that inhibition of SHP-2, a tyrosine phosphatase, will improve the activity of immune checkpoint inhibitors (ICI) that target PD-1 or PD-L1 in lung cancers. We first collected protein expression data from The Cancer Proteome Atlas (TCPA) to study the association of SHP-2 and PD-L1 expression in lung adenocarcinomas. RNA sequencing data was collected from the same subjects through the NCI Genetic Data Commons and evaluated for expression of the PTPN11 (SHP-2) and CD274 (PD-L1) genes. We then analyzed RNA sequencing data from a series of melanoma patients who were either treatment naïve or resistant to ICI therapy. PTPN11 and CD274 expression was compared between groups. Finally, we analyzed gene expression and drug response data collected from 21 non-small cell lung cancer (NSCLC) patients for PTPN11 and CD274 expression. From the three studies, we hypothesize that the activity of SHP-2, rather than the expression, likely controls the expression of PD-L1 as only a weak relationship between PTPN11 and CD274 expression in either lung adenocarcinomas or melanomas was observed. Lastly, the expression of CD274, not PTPN11, correlates with response to ICI in NSCLC.

2021 ◽  
Vol 39 (15_suppl) ◽  
pp. e14534-e14534
Author(s):  
Chan-Young Ock ◽  
Seunghwan Shin ◽  
Wonkyung Jung ◽  
Sangheon Ahn ◽  
Haejoon Kim ◽  
...  

e14534 Background: Novel immuno-oncology (IO) agents are promising but showing their efficacy in early phase clinical trials has been challenging due to limited enrichment strategies using practical biomarker platforms. We hypothesize that an artificial intelligence (AI)-powered spatial analysis of TIL using practically feasible H&E slides, can reflect a specific target gene expression derived from RNA sequencing. This enhances its potential application in early development of novel IO agents. Methods: An AI-powered spatial TIL analyzer, namely Lunit SCOPE IO, was developed with data from 2.8 x 109 micrometer2 H&E-stained tissue regions and 5.9 x 106 TILs from 3,166 whole slide images of multiple cancer types, annotated by board-certified pathologists. Inflamed Score and Immune-Excluded Score was defined as the proportion of all tumor-containing 1 mm2-size tiles within a WSI classified as being of inflamed immune phenotype (high TIL density within cancer epithelium) and immune-excluded phenotype (low TIL density within cancer epithelium, but high TIL density within stroma), respectively. We used RNA sequencing data and H&E images from The Cancer Genome Atlas database, excluding those of mesenchymal origin (n = 7,467). Spearman's rank correlation between each gene expression and IS or IES, respectively, was calculated. Correlation coefficient > 0.2 and false discovery rate (FDR) < 1% was considered as a significant correlation. Results: In a total of 20,304 genes, 871 (4.3%) and 1,155 (5.7%) genes were significantly correlated with Inflamed Score (IS) and Immune-Excluded Score (IES), respectively. The IS was highly related to genes reflecting immune cytolytic activity and targets of approved immune checkpoint inhibitors (Table). Interestingly, it was also significantly correlated with target genes of novel IO such as TIGIT, LAG3, TIM3, IDO, Adenosine receptor A2A, OX40, ICOS, M-CSF, IL2, IL7, and IL12. Moreover, the IES was exclusively correlated with the target genes of CEACAM, TGFB, and IL1. Conclusions: Expression levels of novel I-O target genes are correlated with three scores derived from AI-powered TIL analysis using H&E slides, which can be easily applied to clinical research.[Table: see text]


Author(s):  
Anju Karki ◽  
Noah E Berlow ◽  
Jin-Ah Kim ◽  
Esther Hulleman ◽  
Qianqian Liu ◽  
...  

Abstract Background Diffuse intrinsic pontine glioma (DIPG) is a devastating pediatric cancer with unmet clinical need. DIPG is invasive in nature, where tumor cells interweave into the fiber nerve tracts of the pons making the tumor unresectable. Accordingly, novel approaches in combating the disease is of utmost importance and receptor-driven cell invasion in the context of DIPG is under-researched area. Here we investigated the impact on cell invasion mediated by PLEXINB1, PLEXINB2, platelet growth factor receptor (PDGFR)α, PDGFRβ, epithelial growth factor receptor (EGFR), activin receptor 1 (ACVR1), chemokine receptor 4 (CXCR4) and NOTCH1. Methods We used previously published RNA-sequencing data to measure gene expression of selected receptors in DIPG tumor tissue versus matched normal tissue controls (n=18). We assessed protein expression of the corresponding genes using DIPG cell culture models. Then, we performed cell viability and cell invasion assays of DIPG cells stimulated with chemoattractants/ligands. Results RNA-sequencing data showed increased gene expression of receptor genes such as PLEXINB2, PDGFRα, EGFR, ACVR1, CXCR4 and NOTCH1 in DIPG tumors compared to the control tissues. Representative DIPG cell lines demonstrated correspondingly increased protein expression levels of these genes. Cell viability assays showed minimal effects of growth factors/chemokines on tumor cell growth in most instances. Recombinant SEMA4C, SEM4D, PDGF-AA, PDGF-BB, ACVA, CXCL12 and DLL4 ligand stimulation altered invasion in DIPG cells. Conclusions We show that no single growth factor-ligand pair universally induces DIPG cell invasion. However, our results reveal a potential to create a composite of cytokines or anti-cytokines to modulate DIPG cell invasion.


2013 ◽  
Vol 31 (15_suppl) ◽  
pp. 3623-3623
Author(s):  
F. Anthony San Lucas ◽  
Scott Kopetz ◽  
Paul A. Scheet ◽  
Eduardo Vilar Sanchez

3623 Background: Approximately 10% of colorectal cancers (CRCs) harbor a BRAF mutation (BRAFm). Patients with BRAFm tumors have poor prognosis and are a therapeutic challenge. A BRAFm gene expression signature has been communicated (Popovici et al, JCO 2012), which can identify BRAFm tumors as well as BRAF wild-type tumors that display a similar expression pattern. Collectively, these tumors are termed BRAFm-like. Our goal was to validate this signature using next-generation sequencing and to discover novel therapies for BRAFm-like CRCs using a systems biology approach. Methods: We developed a semi-automated workflow that integrates publicly available tools named the Cancer In-silico Drug Discovery (CIDD). To validate the BRAFm-like signature, we used CIDD to analyze the CRC dataset from the The Cancer Genome Atlas Network (TCGA). Samples were stratified on BRAFm status using exome-sequencing, and expression profiles were inferred from RNA-sequencing. We matched expression profiles with drug-induced signatures inferred from the Connectivity Map (CMap) – a systems biology tool that contains expression data of cell lines treated with 1,500 compounds. CIDD statistically ranks candidate compounds and annotates them to pathways using public databases. Results: When applied to TCGA RNA-sequencing data, a classifier based on the BRAFm-like signature resulted in 93.3% sensitivity and 83.5% specificity for detecting BRAFm samples. When applied to Agilent gene expression data, this resulted in 80% sensitivity and 91.1% specificity. 41% of KRAS-mutated samples and 14% of double wild-type samples were predicted to be BRAFm-like. 100% of MSI-high and 18% of MSS samples were predicted to be BRAFm-like. Compounds near the top of our drug rankings include Gefitinib and MG-262 a proteasome inhibitor. Conclusions: We have validated the BRAFm-like signature using RNA-sequencing and Agilent expression data from the TCGA, and showed a high degree of robustness across technologies. We have identified EGFR and proteasome inhibitors as potential compounds to target BRAFm-like CRCs.


2021 ◽  
Author(s):  
Marion Thibaudin ◽  
Emeric Limagne ◽  
Léa Hampe ◽  
Elise Ballot ◽  
Caroline Truntzer ◽  
...  

Abstract Microsatellite stable colorectal cancers (MSS-CRC) are resistant to anti-PD-1/PD-L1 therapy but the combination of immune checkpoints inhibitors (ICI) could be a clue to reverse resistance. Our aim was to evaluate ex vivo the capacity of the combination of atezolizumab (anti-PD-L1) and tiragolumab (anti-TIGIT) to reactivate the immune response of tumor infiltrating lymphocytes (TILs) in MSS-CRC. We analysed CRC tumor tissue and the associated blood sample in parallel. For each patient sample, extensive immunomonitoring and cytokine production were tested. We generated an ex vivo assay to study immune reactivity following immune stimulation with checkpoint inhibitors of tumor cell suspensions. Three microsatellite instable (MSI) and 13 MSS-CRC tumors were analysed. To generalize our observations, bioinformatics analyses were performed on public data of single cell RNA sequencing of CRC TILs and RNA sequencing data of TCGA. Atezolizumab alone could only reactivate T cells from MSI tumors. Atezolizumab and tiragolumab reactivated T cells in 46% of MSS-CRC samples. Reactivation by ICK was observed in patients with higher baseline frequency of Th1 and Tc1 cells, and was also associated with higher baseline T cell polyfunctionality and higher CD96 expression. CD96 expression was found in CD4 and CD8 TILs and was highly expressed in exhausted T cells. CD96 was expressed at higher levels in CMS1 and CMS4 tumors, and was related to intrinsic poor prognosis. Together these data suggest that the association of atezolizumab and tiragolumab could restore function of CD4 and CD8 TILs in MSS-CRC.


2018 ◽  
Author(s):  
Eric Talevich ◽  
A. Hunter Shain

AbstractRNA-sequencing is most commonly used to measure gene expression, but it is possible to extract genotypic information from RNA-sequencing data, too. Point mutations and translocations can be detected when they occur in expressed genes, however, there are few software solutions to infer copy number information from RNA-sequencing data. This is because a gene’s expression is dictated by a number of variables, including, but not limited to, copy number variation. Here, we report new functionalities within the software package CNVkit that enable copy number inference from RNA-sequencing data. First, CNVkit removes technical variation in gene expression associated with GC-content and transcript length. Next, CNVkit assigns a weight, dictated by several variables, to each transcript with the net effect of preferentially inferring copy number from highly and stably expressed genes. We benchmarked our approach on 105 melanomas from The Cancer Genome Atlas project and observed a high degree of concordance (R = 0.739) between our estimates and those from array comparative genomic hybridization (aCGH) on the same samples. After initial configuration, the software requires few inputs, is able to process a batch of up to 100 samples in less than ten minutes, and can be used in conjunction with pre-existing features of CNVkit, including visualization tools. Overall, we present a rapid, user-friendly software solution to infer copy number information from gene expression data.


Genes ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 120
Author(s):  
Yiyun Sun ◽  
Dandan Xu ◽  
Chundong Zhang ◽  
Yitao Wang ◽  
Lian Zhang ◽  
...  

We previously demonstrated that proline-rich protein 11 (PRR11) and spindle and kinetochore associated 2 (SKA2) constituted a head-to-head gene pair driven by a prototypical bidirectional promoter. This gene pair synergistically promoted the development of non-small cell lung cancer. However, the signaling pathways leading to the ectopic expression of this gene pair remains obscure. In the present study, we first analyzed the lung squamous cell carcinoma (LSCC) relevant RNA sequencing data from The Cancer Genome Atlas (TCGA) database using the correlation analysis of gene expression and gene set enrichment analysis (GSEA), which revealed that the PRR11-SKA2 correlated gene list highly resembled the Hedgehog (Hh) pathway activation-related gene set. Subsequently, GLI1/2 inhibitor GANT-61 or GLI1/2-siRNA inhibited the Hh pathway of LSCC cells, concomitantly decreasing the expression levels of PRR11 and SKA2. Furthermore, the mRNA expression profile of LSCC cells treated with GANT-61 was detected using RNA sequencing, displaying 397 differentially expressed genes (203 upregulated genes and 194 downregulated genes). Out of them, one gene set, including BIRC5, NCAPG, CCNB2, and BUB1, was involved in cell division and interacted with both PRR11 and SKA2. These genes were verified as the downregulated genes via RT-PCR and their high expression significantly correlated with the shorter overall survival of LSCC patients. Taken together, our results indicate that GLI1/2 mediates the expression of the PRR11-SKA2-centric gene set that serves as an unfavorable prognostic indicator for LSCC patients, potentializing new combinatorial diagnostic and therapeutic strategies in LSCC.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
Floranne Boulogne ◽  
Laura Claus ◽  
Henry Wiersma ◽  
Roy Oelen ◽  
Floor Schukking ◽  
...  

Abstract Background and Aims Genetic testing in patients with suspected hereditary kidney disease does not always reveal the genetic cause for the patient's disorder. Potentially pathogenic variants can reside in genes that are not known to be involved in kidney disease, which makes it difficult to prioritize and interpret the relevance of these variants. As such, there is a clear need for methods that predict the phenotypic consequences of gene expression in a way that is as unbiased as possible. To help identify candidate genes we have developed KidneyNetwork, in which tissue-specific expression is utilized to predict kidney-specific gene functions. Method We combined gene co-expression in 878 publicly available kidney RNA-sequencing samples with the co-expression of a multi-tissue RNA-sequencing dataset of 31,499 samples to build KidneyNetwork. The expression patterns were used to predict which genes have a kidney-related function, and which (disease) phenotypes might be caused when these genes are mutated. By integrating the information from the HPO database, in which known phenotypic consequences of disease genes are annotated, with the gene co-expression network we obtained prediction scores for each gene per HPO term. As proof of principle, we applied KidneyNetwork to prioritize variants in exome-sequencing data from 13 kidney disease patients without a genetic diagnosis. Results We assessed the prediction performance of KidneyNetwork by comparing it to GeneNetwork, a multi-tissue co-expression network we previously developed. In KidneyNetwork, we observe a significantly improved prediction accuracy of kidney-related HPO-terms, as well as an increase in the total number of significantly predicted kidney-related HPO-terms (figure 1). To examine its clinical utility, we applied KidneyNetwork to 13 patients with a suspected hereditary kidney disease without a genetic diagnosis. Based on the HPO terms “Renal cyst” and “Hepatic cysts”, combined with a list of potentially damaging variants in one of the undiagnosed patients with mild ADPKD/PCLD, we identified ALG6 as a new candidate gene. ALG6 bears a high resemblance to other genes implicated in this phenotype in recent years. Through the 100,000 Genomes Project and collaborators we identified three additional patients with kidney and/or liver cysts carrying a suspected deleterious variant in ALG6. Conclusion We present KidneyNetwork, a kidney specific co-expression network that accurately predicts what genes have kidney-specific functions and may result in kidney disease. Gene-phenotype associations of genes unknown for kidney-related phenotypes can be predicted by KidneyNetwork. We show the added value of KidneyNetwork by applying it to exome sequencing data of kidney disease patients without a molecular diagnosis and consequently we propose ALG6 as a promising candidate gene. KidneyNetwork can be applied to clinically unsolved kidney disease cases, but it can also be used by researchers to gain insight into individual genes to better understand kidney physiology and pathophysiology. Acknowledgments This research was made possible through access to the data and findings generated by the 100,000 Genomes Project; http://www.genomicsengland.co.uk.


Science ◽  
2015 ◽  
Vol 348 (6230) ◽  
pp. 124-128 ◽  
Author(s):  
Naiyer A. Rizvi ◽  
Matthew D. Hellmann ◽  
Alexandra Snyder ◽  
Pia Kvistborg ◽  
Vladimir Makarov ◽  
...  

Immune checkpoint inhibitors, which unleash a patient’s own T cells to kill tumors, are revolutionizing cancer treatment. To unravel the genomic determinants of response to this therapy, we used whole-exome sequencing of non–small cell lung cancers treated with pembrolizumab, an antibody targeting programmed cell death-1 (PD-1). In two independent cohorts, higher nonsynonymous mutation burden in tumors was associated with improved objective response, durable clinical benefit, and progression-free survival. Efficacy also correlated with the molecular smoking signature, higher neoantigen burden, and DNA repair pathway mutations; each factor was also associated with mutation burden. In one responder, neoantigen-specific CD8+ T cell responses paralleled tumor regression, suggesting that anti–PD-1 therapy enhances neoantigen-specific T cell reactivity. Our results suggest that the genomic landscape of lung cancers shapes response to anti–PD-1 therapy.


2020 ◽  
Author(s):  
Benedict Hew ◽  
Qiao Wen Tan ◽  
William Goh ◽  
Jonathan Wei Xiong Ng ◽  
Kenny Koh ◽  
...  

AbstractBacterial resistance to antibiotics is a growing problem that is projected to cause more deaths than cancer in 2050. Consequently, novel antibiotics are urgently needed. Since more than half of the available antibiotics target the bacterial ribosomes, proteins that are involved in protein synthesis are thus prime targets for the development of novel antibiotics. However, experimental identification of these potential antibiotic target proteins can be labor-intensive and challenging, as these proteins are likely to be poorly characterized and specific to few bacteria. In order to identify these novel proteins, we established a Large-Scale Transcriptomic Analysis Pipeline in Crowd (LSTrAP-Crowd), where 285 individuals processed 26 terabytes of RNA-sequencing data of the 17 most notorious bacterial pathogens. In total, the crowd processed 26,269 RNA-seq experiments and used the data to construct gene co-expression networks, which were used to identify more than a hundred uncharacterized genes that were transcriptionally associated with protein synthesis. We provide the identity of these genes together with the processed gene expression data. The data can be used to identify other vulnerabilities or bacteria, while our approach demonstrates how the processing of gene expression data can be easily crowdsourced.


2020 ◽  
Vol 40 (12) ◽  
Author(s):  
Dafeng Xu ◽  
Yu Wang ◽  
Kailun Zhou ◽  
Jincai Wu ◽  
Zhensheng Zhang ◽  
...  

Abstract Although extracellular vesicles (EVs) in body fluid have been considered to be ideal biomarkers for cancer diagnosis and prognosis, it is still difficult to distinguish EVs derived from tumor tissue and normal tissue. Therefore, the prognostic value of tumor-specific EVs was evaluated through related molecules in pancreatic tumor tissue. NA sequencing data of pancreatic adenocarcinoma (PAAD) were acquired from The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC). EV-related genes in pancreatic cancer were obtained from exoRBase. Protein–protein interaction (PPI) network analysis was used to identify modules related to clinical stage. CIBERSORT was used to assess the abundance of immune and non-immune cells in the tumor microenvironment. A total of 12 PPI modules were identified, and the 3-PPI-MOD was identified based on the randomForest package. The genes of this model are involved in DNA damage and repair and cell membrane-related pathways. The independent external verification cohorts showed that the 3-PPI-MOD can significantly classify patient prognosis. Moreover, compared with the model constructed by pure gene expression, the 3-PPI-MOD showed better prognostic value. The expression of genes in the 3-PPI-MOD had a significant positive correlation with immune cells. Genes related to the hypoxia pathway were significantly enriched in the high-risk tumors predicted by the 3-PPI-MOD. External databases were used to verify the gene expression in the 3-PPI-MOD. The 3-PPI-MOD had satisfactory predictive performance and could be used as a prognostic predictive biomarker for pancreatic cancer.


Sign in / Sign up

Export Citation Format

Share Document