scholarly journals NBAT1/CASC15-003/USP36 control MYCN expression and its downstream pathway genes in neuroblastoma

Author(s):  
Prasanna Kumar Juvvuna ◽  
Tanmoy Mondal ◽  
Mirco Di Marco ◽  
Subazini Thankaswamy Kosalai ◽  
Meena Kanduri ◽  
...  

Abstract Background MYCN has been an attractive therapeutic target in neuroblastoma considering the widespread amplification of the MYCN locus in neuroblastoma, and its established role in neuroblastoma development and progression. Thus, understanding neuroblastoma-specific control of MYCN expression at the transcriptional and post-transcriptional level would lead to identification of novel MYCN-dependent oncogenic pathways and potential therapeutic strategies. Methods By performing loss- and gain-of-function experiments of the neuroblastoma hotspot locus 6p22.3 that encodes lncRNAs CASC15-003 and NBAT1, together with coimmunoprecipitation and immunoblotting, we have shown that both lncRNAs post-translationally control the expression of MYCN through regulating a deubiquitinase enzyme USP36. USP36 oncogenic properties were investigated using cancer cell lines and in vivo models. RNA-seq analysis of loss-of-function experiments of CASC15-003/NBAT1/MYCN/USP36 and JQ1-treated neuroblastoma cells uncovered MYCN-dependent oncogenic pathways. Results We show that NBAT1/CASC15-003 control the stability of MYCN protein through their common interacting protein partner USP36. USP36 harbors oncogenic properties and its higher expression in neuroblastoma patients correlates with poor prognosis, and its downregulation significantly reduces tumor growth in neuroblastoma cell lines and xenograft models. Unbiased integration of RNA-seq data from CASC15-003, NBAT1, USP36 and MYCN knockdowns and neuroblastoma cells treated with MYCN inhibitor JQ1, identified genes that are jointly regulated by the NBAT1/CASC15-003/USP36/MYCN pathway. Functional experiments on one of the target genes, COL18A1, revealed its role in the NBAT1/CASC15-003-dependent cell adhesion feature in neuroblastoma cells. Conclusion Our data shows post-translational regulation of MYCN by NBAT1/CASC15-003/USP36, which represents a new regulatory layer in the complex multilayered gene regulatory network that controls MYCN expression.

Author(s):  
Aleksandar Krstic ◽  
Anja Konietzny ◽  
Melinda Halasz ◽  
Peter Cain ◽  
Udo Oppermann ◽  
...  

Although a rare disease, neuroblastoma accounts for the highest proportion of childhood cancer deaths. There is a lack of recurrent somatic mutations in neuroblastoma embryonal tumours, suggesting a possible role for epigenetic alterations in driving this cancer. While an increasing number of reports suggest an association of MYCN with epigenetic machinery, the mechanisms of these interactions are poorly understood in the neuroblastoma setting. Utilising chemo-genomic approaches we revealed global MYCN-epigenetic interactions and identified numerous epigenetic proteins as MYCN targets. The epigenetic regulators HDAC2, CBX8 and CBP (CREBBP) were all MYCN target genes and also putative MYCN interactors. MYCN-related epigenetic genes included SMARCs, HDACs, SMYDs, BRDs and CREBBP. Expression levels of the majority of MYCN-related epigenetic genes showed predictive ability for neuroblastoma patient outcome. Furthermore, a compound library screen targeting epigenetic proteins revealed broad susceptibility of neuroblastoma cells to all classes of epigenetic regulators, belonging to families of bromodomains, HDACs, HATs, histone methyltransferases, DNA methyltransferases and lysin demethylases. Ninety-six percent of the compounds reduced MYCN-amplified neuroblastoma cell viability. We show that the C646 (CBP-bromodomain targeting compound) exhibits switch-like temporal and dose response behaviour and is effective at reducing neuroblastoma viability. Responsiveness correlates with MYCN expression, with MYCN-amplified cells being more susceptible to C646 treatment. Thus, exploiting the broad vulnerability of neuroblastoma cells to epigenetic targeting compounds represents an exciting strategy in neuroblastoma treatment, particularly for high-risk MYCN-amplified tumours.


1992 ◽  
Vol 3 (2-3) ◽  
pp. 139-150 ◽  
Author(s):  
Jacob S. Manaster ◽  
Tony Feuerman ◽  
C. Patrick Reynolds ◽  
Charles H. Markham

Cultured human catecholaminergic and noncatecholaminergic donor cells were used in neural transplantation experiments in a rat model of Parkinson's disease. Using two different human catecholaminergic neuroblastoma cell lines, one control non-catecholaminergic neuroblastoma cell line, and one sham control (tissue culture medium), transplants were made into the striatum using a modified Ungerstedt hemiparkinsonian rat model. Significant decreases in apomorphine-induced rotational behavior were produced by two of three catecholaminergic cell lines. Grafted cells staining positively for tyrosine hydroxylase (TH) and catecholamine fluorescence indicated viable catecholamine activity in the two cell lines which produced reductions in rotational behavior. Catecholamine fluorescence was not detected in either of the two controls. These data suggest a link between catecholamine secretion by transplanted cells and motor improvement using a rat rotational behavior model.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 5085-5085
Author(s):  
Qingxiao Chen ◽  
Jingsong He ◽  
Xing Guo ◽  
Jing Chen ◽  
Xuanru Lin ◽  
...  

Abstract Background: Acute myeloid leukemia (AML) is the most common form of acute leukemia in adults which is still incurable although novel drugs and new combination of chemotherapies are used . With the development of genetic and molecular biology technologies, more and more genes are found to be related to leukemogenesis and drug resistance of AML. TET2, a member of the ten-eleven-translocation gene family which can modify DNA by catalyzing the conversion of 5-mehtyl-cytosine to 5-hydroxymethyl-cytosine , is often inactivated through mutation or deletion in myeloid malignancies. Recent research reported that TET2 knock-down can promote proliferation of hematopoietic stem cells and leukemic cells. Also, several clinical studies showed that patients with TET2 mutation or low levels of TET2 expression have more aggressive disease courses than those with normal levels of TET2. However, the mechanism of the phenomenon is unknown. Our aim is to uncover how TET2 protein level is negatively correlated with AML cell proliferation and to provide a better view of target therapy in AML. Methods: We determined the expression levels of TET2 and other target genes in acute leukemia cell lines, bone marrow AML specimens, and peripheral blood mononuclear cells from healthy donors by qRT-PCR and Western blot. We also determined the mutation status of TET2 in AML cell lines. CCK8 and flow cytometry were used to determine cell proliferation, cell apoptosis, and cell cycle profile. Methylation-specific PCR were used to examine the methylation status in gene promoter regions. Also, we developed TET2 knock-down lentivirus to transfect AML cell lines to examine the effect of TET2 depletion. Last, RNA-seq was used to compare gene expression level changes between TET2 knock-down cell lines and the control cell lines. Results: AML cells from AML cell lines (KG-1,U937, Kasumi, HL-60, THP-1, and MV4-11) and AML patients' specimens expressed lower levels of TET2 than those of PBMC from the healthy donor (P<0.05). Among AML cell lines, U937 barely expressed TET2, while KG-1 expressed TET2 at a relatively higher level than those of other AML cell lines. We constructed a TET2 shRNA to transfect KG-1,THP-1,MV-4-11,Kasumi,and HL-60, and used qRT-PCR and western blot to verify the knock-down efficiency. CCK8 confirmed that knocking down TET2 could increase leukemia cell proliferation (P<0.05). Flow cytometry showed that cell cycle profile was altered in TET2 knock-down cells compared to the negative control cells. In order to identify target genes, we performed RNA-seq on wildtype and TET2 knockdown KG-1 cells and found that the expression of cell cycle related genes, DNA replication related genes, and some oncogenes were changed. We focused on Pim-1, an oncogene related to leukemogenesis, which was significantly up-regulated in the RNA-seq profile. Western blot and qPCR verified the RNA-seq results of Pim-1 expression in the transfected cells . Also, AML patients' bone marrow samples (n=35) were tested by qPCR and 28 of them were found to express low TET2 but high Pim-1 with the other 7 being opposite. For detailed exploration in expression regulation of Pim-1 via TET2, we screened genes affecting Pim-1 expression and found SHP-1, a tumor suppress gene which is often silenced by promoter methylation in AML. Western blot band of SHP-1 was attenuated in TET2 knockdown KG-1 cells. Moreover, methylation-specific PCR showed that after knocking down TET2 in KG-1 cell line, the promoter regions were methylated much more than the control cells. These results indicated that the function of TET2 in epigenetic modulation plays an important role in regulating Pim-1 expression. Finally, using flow cytometry and CCK8 we surprisingly found that knocking down TET2 expression could lead leukemic cells (KG-1, THP-1 and MV-4-11) more sensitive to Pim-1 inhibitor (SGI-1776 free base) and decitabine (a demethylation agent treating MDS and AML) (P<0.05). Conclusion: Our study showed that knocking down TET2 promoted leukemic cell proliferation. This phenomenon may correlate to Pim-1 up-regulation. Our clinical data also showed that the expression of TET2 and Pim-1 have an inverse relationship. The mechanism of TET2 regulating Pim-1 expression may be related to the epigenetic modulation function of TET2. Finally, we found TET2 downregulation could increase leukemia vulnerability to Pim-1 inhibitor and decitbine, and provide a novel view of target therapy in AML. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 40-40
Author(s):  
Chandraditya Chakraborty ◽  
Eugenio Morelli ◽  
Srikanth Talluri ◽  
Sanika Derebail ◽  
Yan Xu ◽  
...  

Multiple myeloma (MM) is a biologically heterogeneous plasma cell malignancy, however, the mechanisms underlying this complexity are incompletely understood. By deep (70x) whole-genome sequencing (WGS) of 312 primary MM patients, we observed mutations in about 62% of patients in the 5' untranslated region and intron 1 of the 12q24.3 region which cytogenetically marks the BCL7A gene. Integration of WGS with RNA-seq data suggested a widespread loss of BCL7A expression in MM cells as compared to normal plasma cells (PC). To understand the effect of noncoding mutations in BCL7A promoter we performed in-vitro luciferase reporter assay in MM cell lines (H929, MM1S and KK1) devoid of BCL7A mutation in 5'UTR and found that the normalized luciferase reporter activity indicated that the mutation in the promoter significantly reduced BCL7A promoter activity. Next, we recapitulated the loss of BCL7A observed in MM patients, in a panel of MM cell lines using shRNA based genetic interference and observed the appearance of a more proliferative phenotype. The effects of BCL7A loss in MM cells were further confirmed using CRISPR-Cas9 system. BCL7A-KO (knock-out) cells had higher proliferative rate compared to wild type (WT) cells and lentiviral add back of BCL7A plasmid reversed this effect. This phenomenon was validated in a in vivo model, where we found that mice bearing BCL7A KO MM cells developed tumors faster than mice injected with control or add-back cells, suggesting that BCL7A loss increases tumorigenesis in vivo. On the other hand, ectopic expression of BCL7A significantly reduced cell viability and colony formation over time, inducing apoptotic cell death and impacting genes involved in chromatin and chromosome organization, DNA repair and cell cycle. Interestingly, BCL7A is an important member of the m-SWI/SNF chromatin remodeling complex. Using comparative mass spectrometry analysis, we observed that BCL7A expression is essential for the formation of a functional canonical m-SWI/SNF complex in MM cells, controlling the incorporation of active sub-units into the complex. These data suggest that loss-of-function mutations in the BCL7A region may disrupt the formation of SWI/SNF complex activating a transcriptional program that leads to MM cell growth and viability. We therefore evaluated the transcriptomic changes in MM cells upon BCL7A perturbation in a panel of MM cell lines by whole genome RNA-seq. Integrated analysis of modulated genes identified a set of 23 genes significantly upregulated in the presence of BCL7A depletion and downregulated in presence of BCL7A ectopic expression. To investigate whether these genes are involved in the phenotypic and functional effects observed in MM after BCL7A depletion, we performed LOF (loss-of-function) studies (si-RNA screen) using these genes in scrambled and BCL7A KD (knock-down) MM cells. Among others, we observed that MM cells are highly sensitive to the inhibition of RPS3A (V-Fos transformation effector protein) only in the context of BCL7A loss. Our RNA-seq data revealed that RPS3A is highly expressed in primary MM cells, and its expression significantly correlates with low expression of BCL7A in MM patients. Importantly, we observed that RPS3A binds to the core m-SWI/SNF complex proteins; SMARCC2 and SMARCB1 in the absence of BCL7A. RPS3A gene encodes a ribosomal protein that is a component of the 40S subunit and its overexpression transforms NIH3T3 mouse fibroblasts and induces tumor formation in nude mice and also used as an expression marker in squamous cell carcinoma. In conclusion, we here report biological consequences of a frequent non-coding mutation of BCL7A in MM and loss-of-function mutations in the BCL7A region may disrupt the formation of SWI/SNF complex activating a transcriptional process that leads to MM cell growth and viability. Altogether this study shed lights on a new pathogenic mechanism that may drive MM growth with potential translational implication, that may be applicable to other hematological diseases. Disclosures Anderson: Oncopep and C4 Therapeutics.: Other: Scientific Founder of Oncopep and C4 Therapeutics.; Bristol Myers Squibb: Membership on an entity's Board of Directors or advisory committees; Sanofi-Aventis: Membership on an entity's Board of Directors or advisory committees; Janssen: Membership on an entity's Board of Directors or advisory committees; Gilead: Membership on an entity's Board of Directors or advisory committees; Millenium-Takeda: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees. Fulciniti:NIH: Research Funding. Munshi:BMS: Consultancy; OncoPep: Consultancy, Current equity holder in private company, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties; C4: Current equity holder in private company; Janssen: Consultancy; Adaptive: Consultancy; Legend: Consultancy; Amgen: Consultancy; AbbVie: Consultancy; Karyopharm: Consultancy; Takeda: Consultancy.


2020 ◽  
Author(s):  
Alexandra D’Oto ◽  
Jie Fang ◽  
Hongjian Jin ◽  
Beisi Xu ◽  
Shivendra Singh ◽  
...  

ABSTRACTThe H3K27me2/me3 histone demethylase KDM6B is over-expressed in neuroblastoma and essential to neuroblastoma cell survival. While the KDM6B inhibitor, GSK-J4, has shown activity in in vitro and in vivo preclinical models, the mechanism of action remains poorly defined. We demonstrate that genetic and pharmacologic inhibition of KDM6B downregulate the pRB-E2F transcriptome and MYCN expression. Chemical genetics analyses show that a high E2F transcriptome is positively correlated with sensitivity of cancer cells to the KDM6 inhibitor GSK-J4. Mechanistically, inhibition of KDM6B activity reduces the chromatin accessibility of E2F target genes and MYCN. GSK-J4 alters distribution of H3K27me3 and broadly represses the enhancer mark H3K4me1, which may consequently disrupt the long-range chromatin interaction of E2F target genes. KDM6B inhibition phenocopies the transcriptome induced by the specific CDK4/6 inhibitor palbociclib. Overexpression of CDK4/6 or Rb1 knockout not only confers neuroblastoma cell resistance to palbociclib but also to GSK-J4. A gene signature targeted by KDM6B inhibition is associated with poor survival of patients with neuroblastoma regardless of the MYCN status. These data indicate that KDM6B activity promotes an oncogenic CDK4/6-pRB-E2F pathway in neuroblastoma cells via H3K27me3-dependent enhancer-promoter interactions, providing a rationale to target KDM6B for high-risk neuroblastoma.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Gang Ning ◽  
Qihui Zhu ◽  
Wonyoung Kang ◽  
Hamin Lee ◽  
Leigh Maher ◽  
...  

Abstract Background Gastric cancer (GC) is one of the leading causes of cancer-related deaths worldwide. Human epidermal growth factor receptor 2 (HER2) amplification occurs in approximately 13–23% of all GC cases and patients with HER2 overexpression exhibit a poor prognosis. Lapatinib, a dual EGFR/HER2 tyrosine kinase inhibitor, is an effective agent to treat HER2-amplified breast cancer but it failed in gastric cancer (GC) clinical trials. However, the molecular mechanism of lapatinib resistance in HER2-amplified GC is not well studied. Methods We employed an unbiased, genome-scale screening with pooled CRISPR library on HER2-amplified GC cell lines to identify genes that are associated with resistance to lapatinib. To validate the candidate genes, we applied in vitro and in vivo pharmacological tests to confirm the function of the target genes. Results We found that loss of function of CSK or PTEN conferred lapatinib resistance in HER2-amplified GC cell lines NCI-N87 and OE19, respectively. Moreover, PI3K and MAPK signaling was significantly increased in CSK or PTEN null cells. Furthermore, in vitro and in vivo pharmacological study has shown that lapatinib resistance by the loss of function of CSK or PTEN, could be overcome by lapatinib combined with the PI3K inhibitor copanlisib and MEK inhibitor trametinib. Conclusions Our study suggests that loss-of-function mutations of CSK and PTEN cause lapatinib resistance by re-activating MAPK and PI3K pathways, and further proved these two pathways are druggable targets. Inhibiting the two pathways synergistically are effective to overcome lapatinib resistance in HER2-amplified GC. This study provides insights for understanding the resistant mechanism of HER2 targeted therapy and novel strategies that may ultimately overcome resistance or limited efficacy of lapatinib treatment for subset of HER2 amplified GC.


2021 ◽  
Vol 3 (4) ◽  
pp. 12-24
Author(s):  
Mabao YUAN ◽  
Hanjiao HANG ◽  
Lubin YAN ◽  
Xuanjie HUANG ◽  
Ziyang SANG ◽  
...  

[Objective] Neuroblastoma is the most common pediatric neuroendocrine tumor. Patients with high-risk neuroblastoma have poor clinical outcomes. Understanding the mechanisms underlying neuroblastoma progression could help identify potential therapeutic targets. This study aimed to explore the roles of itchy E3 ubiquitin-protein ligase (ITCH) in neuroblastoma progression using neuroblastoma cell lines and xenograft models of neuroblastoma. [Methods] ITCH-silencing or overexpressing neuroblastoma cells were established using two different human neuroblastoma cell lines, SK-N-AS and SH-SY5Y. In vitro and in vivo experiments were carried out to determine the effects of ITCH on neuroblastoma cell behaviors. The dual-luciferase reporter assay and co-transfection experiments were applied to determine the interaction of ITCH and miR-145-5p during neuroblastoma progression. [Results] In both cell lines, ITCH overexpression significantly promotes the proliferation, migration, and invasion capacities of neuroblastoma cells, while ITCH silencing with ShITCH suppressed neuroblastoma cell proliferation and induced apoptosis. Moreover, overexpression of ITCH decreased 51% and 54% the protein expressions of large tumor suppressor kinase 1 (LATS1), and inhibited 59% and 66% the phosphorylation of Yes-associated protein (YAP), concomitant with 2.02-fold and 2.56-fold increased expressions of cell proliferation marker Ki67 and 2.51-fold and 2.26-fold elevated levels of anti-apoptosis marker Bcl2 in SK-N-AS and SH-SY5Y cells, respectively. The dual-luciferase reporter assay demonstrated that ITCH interacted with miR-145-5p. Further in vitro and xenograft experiments showed that ITCH negatively affected the tumor-suppressive effect of miR-145-5p. [Conclusion] ITCH promotes neuroblastoma cell proliferation and metastasis by inhibiting LATS1 and promoting YAP nuclear translocation.


BMC Cancer ◽  
2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Sonia Cournoyer ◽  
Anissa Addioui ◽  
Assila Belounis ◽  
Mona Beaunoyer ◽  
Carine Nyalendo ◽  
...  

Abstract Background Neuroblastoma (NB) is a frequent pediatric tumor associated with poor prognosis. The disregulation of Bcl-2, an anti-apoptotic protein, is crucial for the tumoral development and chemoresistance. Autophagy is also implicated in tumor cell survival and chemoresistance. The aim of our study was to demonstrate therapeutic efficiency of GX 15–070, a pan-Bcl-2 family inhibitor, used alone and in combination with conventional drugs or with hydroxychloroquine (HCQ), an autophagy inhibitor. Methods Five neuroblastoma cell lines were tested for the cytotoxic activity of GX 15–070 alone or in combination with cisplatin, doxorubicin, HCQ or Z-VAD-FMK a broad-spectrum caspase inhibitor. Apoptosis and autophagy levels were studied by western-blot and FACS. Orthotopic injections were performed on NOD/LtSz-scid/IL-2Rgamma null mice that were treated with either GX 15–070 alone or in combination with HCQ. Results Synergistic cytotoxicity was observed for the drug combination in all of the 5 neuroblastoma cell lines tested, including MYCN amplified lines and in cancer stem cells. GX 15–070 significantly increased apoptosis and autophagy in neuroblastoma cells as evidenced by increased levels of the autophagy marker, LC3-II. Inhibition of autophagy by HCQ, further increased the cytotoxicity of this combinatorial treatment, suggesting that autophagy induced by these agent plays a cytoprotective role. In vivo, GX 15–070 combined with HCQ significantly decreased the growth of the tumor and the number of distant metastases. Conclusions Based on the synergistic effect of HCQ and GX 15–070 observed in this study, the combination of these two drugs may be utilized as a new therapeutic approach for neuroblastoma.


2013 ◽  
Vol 31 (15_suppl) ◽  
pp. 10041-10041
Author(s):  
Peter Zage ◽  
Kathy Scorsone ◽  
Linna Zhang

10041 Background: Neuroblastoma is the most common extra-cranial solid tumor of childhood. Many children present with high-risk disease characterized by rapid tumor growth, resistance to chemotherapy, and widespread metastasis, and novel therapies are needed. Previous studies have identified a role for the HGF/c-Met pathway in the pathogenesis of neuroblastoma. We hypothesized that EMD1214063 would be effective against neuroblastoma tumor cells and tumors in preclinical models via inhibition of HGF/c-Met signaling. Methods: We determined the expression of c-Met in a panel of neuroblastoma tumor cells and neuroblastoma cell viability after treatment with EMD1214063 using MTT assays. Analyses were performed for changes in cell morphology, cell cycle progression, and cell death via apoptosis after EMD1214063 treatment. To investigate the efficacy of EMD1214063 against neuroblastoma tumors in vivo, neuroblastoma cells were injected orthotopically into immunocompromised mice, and the mice in which tumors developed were treated with oral EMD1214063. Results: All neuroblastoma cell lines were sensitive to EMD1214063, and IC50 values ranged from 2.4 - 8.5 mcM. EMD1214063 treatment inhibited HGF-mediated c-Met phosphorylation in neuroblastoma cells. EMD1214063 induced cell cycle arrest in neuroblastoma tumor cells with high c-Met expression, and induced apoptosis in all tested cell lines. In mice with neuroblastoma xenograft tumors, EMD1214063 inhibited tumor growth. Conclusions: Treatment of neuroblastoma tumor cells with EMD1214063 inhibits HGF-induced c-Met phosphorylation and results in cell death. Furthermore, EMD1214063 induces cell cycle arrrest prior to cell death in neuroblastoma tumor cells with high c-Met expression. EMD1214063 treatment is effective in reducing tumor growth in vivo in mice. Inhibition of c-Met represents a potential new therapeutic strategy for neuroblastoma, and further preclinical studies of EMD1214063 are warranted.


Sign in / Sign up

Export Citation Format

Share Document