scholarly journals Aspergillus lentulus: An Under-recognized Cause of Antifungal Drug-Resistant Aspergillosis

2021 ◽  
Vol 8 (8) ◽  
Author(s):  
Saman Nematollahi ◽  
Nitipong Permpalung ◽  
Sean X Zhang ◽  
Megan Morales ◽  
Kieren A Marr

Abstract Aspergillus lentulus is a drug-resistant species that is phenotypically similar to A. fumigatus. It was discovered as a cause of azole-breakthrough disease, consistent with in vitro resistance. Clinical labs can misidentify the species as fumigatus based on phenotypic typing. We describe 4 recent cases and provide a brief review.

2020 ◽  
Vol 117 (36) ◽  
pp. 22473-22483 ◽  
Author(s):  
Caitlin H. Kowalski ◽  
Kaesi A. Morelli ◽  
Daniel Schultz ◽  
Carey D. Nadell ◽  
Robert A. Cramer

Human fungal infections may fail to respond to contemporary antifungal therapies in vivo despite in vitro fungal isolate drug susceptibility. Such a discrepancy between in vitro antimicrobial susceptibility and in vivo treatment outcomes is partially explained by microbes adopting a drug-resistant biofilm mode of growth during infection. The filamentous fungal pathogenAspergillus fumigatusforms biofilms in vivo, and during biofilm growth it has reduced susceptibility to all three classes of contemporary antifungal drugs. Specific features of filamentous fungal biofilms that drive antifungal drug resistance remain largely unknown. In this study, we applied a fluorescence microscopy approach coupled with transcriptional bioreporters to define spatial and temporal oxygen gradients and single-cell metabolic activity withinA. fumigatusbiofilms. Oxygen gradients inevitably arise duringA. fumigatusbiofilm maturation and are both critical for, and the result of,A. fumigatuslate-stage biofilm architecture. We observe that these self-induced hypoxic microenvironments not only contribute to filamentous fungal biofilm maturation but also drive resistance to antifungal treatment. Decreasing oxygen levels toward the base ofA. fumigatusbiofilms increases antifungal drug resistance. Our results define a previously unknown mechanistic link between filamentous fungal biofilm physiology and contemporary antifungal drug resistance. Moreover, we demonstrate that drug resistance mediated by dynamic oxygen gradients, found in many bacterial biofilms, also extends to the fungal kingdom. The conservation of hypoxic drug-resistant niches in bacterial and fungal biofilms is thus a promising target for improving antimicrobial therapy efficacy.


2020 ◽  
Vol 20 (1) ◽  
pp. 69-75
Author(s):  
Santi M. Mandal ◽  
Subhanil Chakraborty ◽  
Santanu Sahoo ◽  
Smritikona Pyne ◽  
Samaresh Ghosh ◽  
...  

Background: The need for suitable antibacterial agents effective against Multi-drug resistant Gram-negative bacteria is acknowledged globally. The present study was designed to evaluate the possible antibacterial potential of an extracted compound from edible flowers of Moringa oleifera. Methods: Five different solvents were used for preparing dried flower extracts. The most effective extract was subjected to fractionation and further isolation of the active compound with the highest antibacterial effect was obtained using TLC, Column Chromatography and reverse phase- HPLC. Approaches were made for characterization of the isolated compound using FTIR, NMR and Mass spectrometry. Antibacterial activity was evaluated according to the CLSI guidelines. Results: One fraction of aqueous acetic acid extract of M. oleifera flower was found highly effective and more potent than conventional antibiotics of different classes against Multi-drug resistant Gram-negative bacilli (MDR-GNB) when compared. The phytochemical analysis of the isolated compound revealed the presence of hydrogen-bonded amine and hydroxyl groups attributable to unsaturated amides. Conclusion: The present study provided data indicating a potential for use of the flowers extract of M. oleifera in the fight against infections caused by lethal MDR-GNB. Recommendations: Aqueous acetic acid flower extract of M. oleifera is effective, in-vitro, against Gram-negative bacilli. This finding may open a scope in pharmaceutics for the development of new classes of antibiotics.


2021 ◽  
Vol 18 (4) ◽  
pp. 398-418
Author(s):  
Vinícius Guimarães da Paixão ◽  
Samuel Silva da Rocha Pita

Background: Leishmania infantum causes the most lethal form of Leishmaniasis: Visceral leishmaniasis. Current therapy for this disease is related to the development of drug-resistant species and toxicity. Trypanothione Reductase (LiTR), a validated target for the drug discovery process, is involved with parasites' thiol-redox metabolism. Objective: In this study, through Virtual Screening employing two distinct Natural Products Brazilian databases, we aimed to identify novel inhibitor scaffolds against LiTR. Results: Thus, the “top 10” LiTR-ligand energies have been selected and their interaction profiles into LiTR sites through the AuPosSOM server have been verified. Finally, Pred-hERG, Aggregator Advisor, FAF-DRUGS, pkCSM and DataWarrior were employed and their results allowed us to evaluate, respectively, the cardiotoxicity, aggregation capacity, presence of false-positive compounds (PAINS) and their toxicities. Conclusion: Three molecules that overcame the in silico pharmacokinetic analysis and have a good interaction with LiTR, were chosen to use in vitro assays hoping that our computational results reported here would aid the development of new anti-leishmanial compounds.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Jian Wu ◽  
Min Zhang ◽  
Omar Faruq ◽  
Eldad Zacksenhaus ◽  
Wenming Chen ◽  
...  

Abstract Background SMAD1, a central mediator in TGF-β signaling, is involved in a broad range of biological activities including cell growth, apoptosis, development and immune response, and is implicated in diverse type of malignancies. Whether SMAD1 plays an important role in multiple myeloma (MM) pathogenesis and can serve as a therapeutic target are largely unknown. Methods Myeloma cell lines and primary MM samples were used. Cell culture, cytotoxicity and apoptosis assay, siRNA transfection, Western blot, RT-PCR, Soft-agar colony formation, and migration assay, Chromatin immunoprecipitation (Chip), animal xenograft model studies and statistical analysis were applied in this study. Results We demonstrate that SMAD1 is highly expressed in myeloma cells of MM patients with advanced stages or relapsed disease, and is associated with significantly shorter progression-free and overall survivals. Mechanistically, we show that SMAD1 is required for TGFβ-mediated proliferation in MM via an ID1/p21/p27 pathway. TGF-β also enhanced TNFα-Induced protein 8 (TNFAIP8) expression and inhibited apoptosis through SMAD1-mediated induction of NF-κB1. Accordingly, depletion of SMAD1 led to downregulation of NF-κB1 and TNFAIP8, resulting in caspase-8-induced apoptosis. In turn, inhibition of NF-κB1 suppressed SMAD1 and ID1 expression uncovering an autoregulatory loop. Dorsomorphin (DM), a SMAD1 inhibitor, exerted a dose-dependent cytotoxic effect on drug-resistant MM cells with minimal cytotoxicity to normal hematopoietic cells, and further synergized with the proteasomal-inhibitor bortezomib to effectively kill drug-resistant MM cells in vitro and in a myeloma xenograft model. Conclusions This study identifies SMAD1 regulation of NF-κB1/TNFAIP8 and ID1-p21/p27 as critical axes of MM drug resistance and provides a potentially new therapeutic strategy to treat drug resistance MM through targeted inhibition of SMAD1.


2021 ◽  
Author(s):  
Jess Vergis ◽  
S V S Malik ◽  
Richa Pathak ◽  
Manesh Kumar ◽  
Nitin V Kurkure ◽  
...  

Abstract High throughput in vivo laboratory models is need for screening and identification of effective therapeutic agents to overcome microbial drug-resistance. This study was undertaken to evaluate in vivo antimicrobial efficacy of short-chain antimicrobial peptide- Cecropin A (1–7)-Melittin (CAMA) against three multi- drug resistant enteroaggregative Escherichia coli (MDR-EAEC) field isolates in a Galleria mellonella larval model. The minimum inhibitory concentration (MIC; 2.0 mg/L) and minimum bactericidal concentration (MBC; 4.0 mg/L) of CAMA were determined by microdilution assay. CAMA was found to be stable at high temperatures, physiological concentration of cationic salts and proteases; safe with sheep erythrocytes, secondary cell lines and commensal lactobacilli at lower MICs; and exhibited membrane permeabilisation. In vitro time-kill assay revealed concentration- and time-dependent clearance of MDR-EAEC in CAMA-treated groups at 30 min. CAMA- treated G. mellonella larvae exhibited an increased survival rate, reduced MDR-EAEC counts, immunomodulatory effect and proved non-toxic which concurred with histopathological findings. CAMA exhibited either an equal or better efficacy than the tested antibiotic control, meropenem. This study highlights the possibility of G. mellonella larvae as an excellent in vivo model for investigating the host-pathogen interaction, including the efficacy of antimicrobials against MDR-EAEC strains.


2021 ◽  
Vol 9 (3) ◽  
pp. 517
Author(s):  
Mohamed El-Telbany ◽  
Gamal El-Didamony ◽  
Ahmed Askora ◽  
Eman Ariny ◽  
Dalia Abdallah ◽  
...  

Phage therapy is an alternative treatment to antibiotics that can overcome multi-drug resistant bacteria. In this study, we aimed to isolate and characterize lytic bacteriophages targeted against Enterococcus faecalis isolated from root canal infections obtained from clinics at the Faculty of Dentistry, Ismalia, Egypt. Bacteriophage, vB_ZEFP, was isolated from concentrated wastewater collected from hospital sewage. Morphological and genomic analysis revealed that the phage belongs to the Podoviridae family with a linear double-stranded DNA genome, consisting of 18,454, with a G + C content of 32.8%. Host range analysis revealed the phage could infect 10 of 13 E. faecalis isolates exhibiting a range of antibiotic resistances recovered from infected root canals with efficiency of plating values above 0.5. One-step growth curves of this phage showed that it has a burst size of 110 PFU per infected cell, with a latent period of 10 min. The lytic activity of this phage against E. faecalis biofilms showed that the phage was able to control the growth of E. faecalis in vitro. Phage vB_ZEFP could also prevent ex-vivo E. faecalis root canal infection. These results suggest that phage vB_ZEFP has potential for application in phage therapy and specifically in the prevention of infection after root canal treatment.


Gut Pathogens ◽  
2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Padikkamannil Abishad ◽  
Pollumahanti Niveditha ◽  
Varsha Unni ◽  
Jess Vergis ◽  
Nitin Vasantrao Kurkure ◽  
...  

Abstract Background In the wake of emergence of antimicrobial resistance, bioactive phytochemical compounds are proving to be important therapeutic agents. The present study envisaged in silico molecular docking as well as in vitro antimicrobial efficacy screening of identified phytochemical ligands to the dispersin (aap) and outer membrane osmoporin (OmpC) domains of enteroaggregative Escherichia coli (EAEC) and non-typhoidal Salmonella spp. (NTS), respectively. Materials and methods The evaluation of drug-likeness, molecular properties, and bioactivity of the identified phytocompounds (thymol, carvacrol, and cinnamaldehyde) was carried out using Swiss ADME, while Protox-II and StopTox servers were used to identify its toxicity. The in silico molecular docking of the phytochemical ligands with the protein motifs of dispersin (PDB ID: 2jvu) and outer membrane osmoporin (PDB ID: 3uu2) were carried out using AutoDock v.4.20. Further, the antimicrobial efficacy of these compounds against multi-drug resistant EAEC and NTS strains was determined by estimating the minimum inhibitory concentrations and minimum bactericidal concentrations. Subsequently, these phytochemicals were subjected to their safety (sheep and human erythrocytic haemolysis) as well as stability (cationic salts, and pH) assays. Results All the three identified phytochemicals ligands were found to be zero violators of Lipinski’s rule of five and exhibited drug-likeness. The compounds tested were categorized as toxicity class-4 by Protox-II and were found to be non- cardiotoxic by StopTox. The docking studies employing 3D model of dispersin and ompC motifs with the identified phytochemical ligands exhibited good binding affinity. The identified phytochemical compounds were observed to be comparatively stable at different conditions (cationic salts, and pH); however, a concentration-dependent increase in the haemolytic assay was observed against sheep as well as human erythrocytes. Conclusions In silico molecular docking studies provided useful insights to understand the interaction of phytochemical ligands with protein motifs of pathogen and should be used routinely before the wet screening of any phytochemicals for their antibacterial, stability, and safety aspects.


Sign in / Sign up

Export Citation Format

Share Document