scholarly journals 2143. Attempting to Add Clarity to “Indeterminates” on a Deployed Rapid Diagnostic with Antimicrobial Stewardship Program (ASP) Intervention

2019 ◽  
Vol 6 (Supplement_2) ◽  
pp. S726-S726
Author(s):  
Heather L Cox ◽  
April E Attai ◽  
Allison M Stilwell ◽  
Kasi B Vegesana ◽  
Frankie Brewster ◽  
...  

Abstract Background Rapid diagnostic testing paired with ASP intervention optimizes therapy and improves outcomes but few data guide ASP response in the absence of organism identification (ID). We describe the microbiology for organisms unidentified by Accelerate Pheno™ Gram-negative platform (AXDX) in order to inform ASP-provider team communication (PTC). Methods Consecutive, non-duplicate inpatient blood cultures with Gram-negative bacilli (GNB) following AXDX implementation at a single university hospital between April 2018 and March 2019 were included. Standard of care (SOC) ID and susceptibility followed AXDX. Clinical Microbiology emailed AXDX results to the ASP in real time; results were released into the EMR paired with telephone PTC or withheld after ASP review. Bloodstream Infections (BSIs) and patient outcomes for organisms labeled no/indeterminate ID by the AXDX were characterized. Results AXDX was performed on 351 blood cultures. Among 52 (15%) labeled no/indeterminate ID, SOC methods revealed: Enterobacteriaceae (40%; 9 monomicrobial with AXDX targets), anaerobes (21%), non-lactose fermenters (NLFs) other than Pseudomonas aeruginosa (21%), and fastidious GNB (10%). Frequent organisms without AXDX targets included: Raoultella planticola (4); Bacteroides fragilis, Cupriavidus spp., Haemophilus spp., Prevotella spp., Providencia spp., non-aeruginosa Pseudomonas spp., Salmonella spp. (3 each); Pasteurella multocida, Stenotrophomonas maltophilia (2 each). BSI sources were most commonly intra-abdominal (21%), central line-associated (17%), or unknown (17%). CLABSIs were associated with immune suppression and/or substance abuse in all but 1 case. BSIs without active empiric therapy included: NDM-producing Providencia stuartii SSSI; OXA-48-producing R. planticola intraabdominal infection (IAI); Pandoraea spp. CLABSI after liver transplant; enteric fever; B. fragilis, Leptotrichia wadei, and S. maltophilia, each of unknown source. In-hospital mortality occurred in 4 of these cases. Conclusion When AXDX yields no/indeterminate ID, ASP chart review for possible anaerobic/IAI, unique environmental exposures, and travel history may assist in guiding empiric therapy. GNB with AXDX targets are not excluded. Disclosures All authors: No reported disclosures.

2019 ◽  
Vol 6 (Supplement_2) ◽  
pp. S105-S105
Author(s):  
Jessica D Forbes ◽  
Reem Haj ◽  
Linda R Taggart ◽  
Ramzi Fattouh ◽  
Elizabeth Leung ◽  
...  

Abstract Background Survival of patients with septic shock is dependent on the timing of effective antibiotic administration. The initial notification by the microbiology lab of a positive blood culture is a key factor in improving patient outcomes. It can take >24 hours to definitively identify bacteria from positive blood cultures. Accordingly, we employed rapid organism identification and studied the impact of this on patient management from a quality improvement perspective. Methods Rapid organism identification was performed for bacteremic patients admitted to an ICU at St. Michael’s Hospital in Toronto, ON, by creating a pellet from positive blood culture bottles using a lysis centrifugation technique. MALDI-TOF was then used to obtain an organism identification. The microbiology lab verbally notified the ward clerk of the identification and surveys were conducted with treating physicians within 24–48 hours to evaluate the downstream impact of the rapid identification including changes to antibiotics, diagnostic testing, central line management and requests for specialty consultations. Results Between January 28 and April 28, 2019, 17 rapid blood culture results were included for study. When asked how physicians received the result, in 7 cases the physician did not remember; other responses included microbiology report (2), nurse (2), pharmacist (1), antimicrobial stewardship or lab (1), on-call team (1) and residents (1). Antibiotics were adjusted in 13 patients; 3 of which may have changed antibiotics for reasons other than the organism identification. Reasons for not changing therapy include: appropriate empiric treatment, likely contaminants, or physician not being notified of the result. In 5 cases, all antibiotics were discontinued, in another 2 cases the antibiotics were broadened and a further 5 narrowed to cover the organism; the remaining 5 continued the same empiric therapy. Repeat blood cultures were obtained for 5 cases, follow-up imaging in 5 cases and lines were changed/removed in 5 cases. Consultation was requested for 7 cases. Conclusion Based on preliminary data, rapid organism identification shows promise of improved patient management with line removal and antibiotics adjustments occurring 1 day sooner with rapid results. Disclosures All authors: No reported disclosures.


2020 ◽  
Vol 58 (4) ◽  
Author(s):  
Mark D. Gonzalez ◽  
Melanie L. Yarbrough

ABSTRACT Rapid diagnostic testing (RDT) can facilitate earlier optimization of the treatment of bloodstream infections, particularly in conjunction with an effective antimicrobial stewardship program (ASP). However, the effective implementation and workflow of RDTs are still a matter of debate, particularly in a pediatric setting. In this issue of the Journal of Clinical Microbiology, L. J. Juttukonda, S. Katz, J. Gillon, J. Schmitz, and R. Banerjee (J Clin Microbiol 58:e01400-19, 2020, https://doi.org/10.1128/JCM.01400-19) investigate the impact of a multiplex, molecular RDT on changes to antimicrobial therapy in an academic children’s hospital. These data reveal several factors that clinical laboratories should consider prior to the implementation of RDTs for positive blood cultures.


Antibiotics ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 851 ◽  
Author(s):  
Biagio Santella ◽  
Veronica Folliero ◽  
Gerarda Maria Pirofalo ◽  
Enrica Serretiello ◽  
Carla Zannella ◽  
...  

Bloodstream infections (BSIs) are among the leading causes of morbidity and mortality worldwide, among infectious diseases. Local knowledge of the main bacteria involved in BSIs and their associated antibiotic susceptibility patterns is essential to rationalize the empiric antimicrobial therapy. The aim of this study was to define the incidence of infection and evaluate the antimicrobial resistance profile of the main pathogens involved in BSIs. This study enrolled patients of all ages and both sexes admitted to the University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, Salerno, Italy between January 2015 to December 2019. Bacterial identification and antibiotic susceptibility testing were performed with Vitek 2. A number of 3.949 positive blood cultures were included out of 24,694 total blood cultures from 2015 to 2019. Coagulase-negative staphylococci (CoNS) were identified as the main bacteria that caused BSI (17.4%), followed by Staphylococcus aureus (12.3%), Escherichia coli (10.9%), and Klebsiella pneumoniae (9.4%). Gram-positive bacteria were highly resistant to Penicillin G and Oxacillin, while Gram-negative strains to Ciprofloxacin, Cefotaxime, Ceftazidime, and Amoxicillin-clavulanate. High susceptibility to Vancomycin, Linezolid, and Daptomycin was observed among Gram-positive strains. Fosfomycin showed the best performance to treatment Gram-negative BSIs. Our study found an increase in resistance to the latest generation of antibiotics over the years. This suggests an urgent need to improve antimicrobial management programs to optimize empirical therapy in BSI.


2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S71-S71
Author(s):  
Fidelia Bernice ◽  
Edina Avdic ◽  
Kathryn Dzintars ◽  
Aliyah Cruz

Abstract Background The objective of this study was to confirm the validity of institution specific treatment recommendations targeting organisms identified by GenMark Dx® ePlex® blood cultures identification (BCID) Gram-negative panel prior to susceptibility results. Methods We developed and implemented institution specific guidelines for empiric antibiotic therapy for Gram-negative organisms targeted by GenMark Dx® ePlex® BCID. We utilized blood culture antibiograms, existing evidence for the most optimal agent for each pathogen, probable resistance mechanisms and patient clinical status to create these guidelines. From December 16, 2019 through May 31, 2020, infectious diseases pharmacists reviewed all positive blood cultures; assessed compliance with guidelines and intervened as needed. The primary objective was to determine how frequently guideline recommend agents would be ineffective against targeted pathogens based on susceptibilities. Secondary objectives were compliance with guidelines and frequency of therapy escalation or de-escalation. Results GenMark® testing was completed on 222 cultures positive for Gram-negative rods with target organisms identification in 195 (88%) blood cultures. Two hundred and five organisms were identified; most commonly E. coli (40%) and K. pneumoniae (21%).Resistance markers were detected in 30 aerobic blood cultures; 28 CTX-M, and 2 KPC. Our institutional guideline provided appropriate empiric coverage in 93% of bacteremia episodes. The most common reason for ineffective therapy was the presence of resistance mechanisms not detected by GenMark® test (e.g. non-CTX-M extended spectrum beta-lactamases). The compliance rate with the guidelines was 55%; the most common reason for non-compliance was the use of an anti-pseudmonal beta-lactams in neutropenic patients.. The system failed to identify panel organisms in only 5 (2%) of blood cultures. Conclusion The institution-specific guidelines providing empiric coverage for each organism identified by rapid diagnostic tests can aid antimicrobial stewardship efforts to de-escalate therapy while still providing effective coverage in >90% of cases. Disclosures All Authors: No reported disclosures.


Author(s):  
Evan D Robinson ◽  
Allison M Stilwell ◽  
April E Attai ◽  
Lindsay E Donohue ◽  
Megan D Shah ◽  
...  

Abstract Background Implementation of the Accelerate PhenoTM Gram-negative platform (RDT) paired with antimicrobial stewardship program (ASP) intervention projects to improve time to institutional-preferred antimicrobial therapy (IPT) for Gram-negative bacilli (GNB) bloodstream infections (BSIs). However, few data describe the impact of discrepant RDT results from standard of care (SOC) methods on antimicrobial prescribing. Methods A single-center, pre-/post-intervention study of consecutive, nonduplicate blood cultures for adult inpatients with GNB BSI following combined RDT + ASP intervention was performed. The primary outcome was time to IPT. An a priori definition of IPT was utilized to limit bias and to allow for an assessment of the impact of discrepant RDT results with the SOC reference standard. Results Five hundred fourteen patients (PRE 264; POST 250) were included. Median time to antimicrobial susceptibility testing (AST) results decreased 29.4 hours (P < .001) post-intervention, and median time to IPT was reduced by 21.2 hours (P < .001). Utilization (days of therapy [DOTs]/1000 days present) of broad-spectrum agents decreased (PRE 655.2 vs POST 585.8; P = .043) and narrow-spectrum beta-lactams increased (69.1 vs 141.7; P < .001). Discrepant results occurred in 69/250 (28%) post-intervention episodes, resulting in incorrect ASP recommendations in 10/69 (14%). No differences in clinical outcomes were observed. Conclusions While implementation of a phenotypic RDT + ASP can improve time to IPT, close coordination with Clinical Microbiology and continued ASP follow up are needed to optimize therapy. Although uncommon, the potential for erroneous ASP recommendations to de-escalate to inactive therapy following RDT results warrants further investigation.


2020 ◽  
Vol 41 (S1) ◽  
pp. s199-s200
Author(s):  
Matthew Linam ◽  
Dorian Hoskins ◽  
Preeti Jaggi ◽  
Mark Gonzalez ◽  
Renee Watson ◽  
...  

Background: Discontinuation of contact precautions for methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococci (VRE) have failed to show an increase in associated transmission or infections in adult healthcare settings. Pediatric experience is limited. Objective: We evaluated the impact of discontinuing contact precautions for MRSA, VRE, and extended-spectrum β-lactamase–producing gram-negative bacilli (ESBLs) on device-associated healthcare-associated infections (HAIs). Methods: In October 2018, contact precautions were discontinued for children with MRSA, VRE, and ESBLs in a large, tertiary-care pediatric healthcare system comprising 2 hospitals and 620 beds. Coincident interventions that potentially reduced HAIs included blood culture diagnostic stewardship (June 2018), a hand hygiene education initiative (July 2018), a handshake antibiotic stewardship program (December 2018) and multidisciplinary infection prevention rounding in the intensive care units (November 2018). Compliance with hand hygiene and HAI prevention bundles were monitored. Device-associated HAIs were identified using standard definitions. Annotated run charts were used to track the impact of interventions on changes in device-associated HAIs over time. Results: Average hand hygiene compliance was 91%. Compliance with HAI prevention bundles was 81% for ventilator-associated pneumonias, 90% for catheter-associated urinary tract infections, and 97% for central-line–associated bloodstream infections. Overall, device-associated HAIs decreased from 6.04 per 10,000 patient days to 3.25 per 10,000 patient days after October 2018 (Fig. 1). Prior to October 2018, MRSA, VRE and ESBLs accounted for 10% of device-associated HAIs. This rate decreased to 5% after October 2018. The decrease in HAIs was likely related to interventions such as infection prevention rounds and handshake stewardship. Conclusions: Discontinuation of contact precautions for children with MRSA, VRE, and ESBLs were not associated with increased device-associated HAIs, and such discontinuation is likely safe in the setting of robust infection prevention and antibiotic stewardship programs.Funding: NoneDisclosures: None


2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S156-S157
Author(s):  
Aikaterini Papamanoli ◽  
Jeanwoo Yoo ◽  
Azad Mojahedi ◽  
Robin Jacob ◽  
Prabhjot Grewal ◽  
...  

Abstract Background Coronavirus disease 19 (COVID-19) leading to acute respiratory distress syndrome is associated with need for intensive care (IC), mechanical ventilation (MV), and prolonged recovery. These patients are thus predisposed to blood stream infections which can worsen outcomes. This risk may be aggravated by adjunctive therapies. Methods We reviewed the medical records of all adults admitted to Stony Brook University Hospital, NY, from March 1 to April 15, 2020 with severe COVID-19 pneumonia (requiring high-flow O2). Patients who received MV or died within 24h were excluded. Patients were followed until death or hospital discharge. We reviewed positive blood cultures (PBC) for pathogenic microorganisms, and calculated the incidence of bacteremia, rates of infective endocarditis (IE), and impact on mortality. Microbes isolated only once and belonging to groups defined as commensal skin microbiota were labelled as contaminants. We also examined the impact of adjunctive therapies with immunosuppressive potential (steroids and tocilizumab), on bacteremia. Results A total of 469 patients with severe COVID-19 pneumonia were included (Table 1). Of these, 199 (42.4%) required IC and 172 (36.7%) MV. Median length of stay was 13 days (8–22) and 94 (20.0%) had PBC. Of these, 43 were considered true pathogens (bacteremia), with predominance of E. faecalis and S. epidermidis, and 51 were considered contaminants (Table 2). The incidence of bacteremia (43/469, 9.2%) was 5.1 per 1000 patient-days (95%CI 3.8–6.4). An echocardiogram was performed in 21 patients, 1 had an aortic valve vegetation (IE) by methicillin sensitive S. aureus. Bacteremia rates were nonsignificantly higher with steroids (5.9 vs 3.7 per 1000 patient-days; P=0.057). Use of tocilizumab was not associated with bacteremia (5.8 vs 4.8 per 1000 patient-days; P=0.28). Mortality was nonsignificantly higher in patients with (15/43, 34.9%) vs. without (108/426, 25.4%) bacteremia (P=0.20). Length of stay was the strongest predictor of bacteremia, with risk increasing by 7% (95%CI 6%-9%, P< 0.001) per additional day. Cohort Characteristics of Patients with Severe COVID-19 Pneumonia on High-Flow O2 (N= 469) All Microorganisms Isolated from Blood Cultures Conclusion The incidence of bacteremia was relatively low and IE was uncommon in this study of severe COVID-19 patients. Risk of bacteremia increased with longer hospital stay and with steroids use, but not with tocilizumab. Disclosures All Authors: No reported disclosures


2017 ◽  
Vol 61 (9) ◽  
Author(s):  
P. B. Bookstaver ◽  
E. B. Nimmich ◽  
T. J. Smith ◽  
J. A. Justo ◽  
J. Kohn ◽  
...  

ABSTRACT The use of rapid diagnostic tests (RDTs) enhances antimicrobial stewardship program (ASP) interventions in optimization of antimicrobial therapy. This quasi-experimental cohort study evaluated the combined impact of an ASP/RDT bundle on the appropriateness of empirical antimicrobial therapy (EAT) and time to de-escalation of broad-spectrum antimicrobial agents (BSAA) in Gram-negative bloodstream infections (GNBSI). The ASP/RDT bundle consisted of system-wide GNBSI treatment guidelines, prospective stewardship monitoring, and sequential introduction of two RDTs, matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) and the FilmArray blood culture identification (BCID) panel. The preintervention period was January 2010 through December 2013, and the postintervention period followed from January 2014 through June 2015. The postintervention period was conducted in two phases; phase 1 followed the introduction of MALDI-TOF MS, and phase 2 followed the introduction of the FilmArray BCID panel. The interventions resulted in significantly improved appropriateness of EAT (95% versus 91%; P = 0.02). Significant reductions in median time to de-escalation from combination antimicrobial therapy (2.8 versus 1.5 days), antipseudomonal beta-lactams (4.0 versus 2.5 days), and carbapenems (4.0 versus 2.5 days) were observed in the postintervention compared to the preintervention period (P < 0.001 for all). The reduction in median time to de-escalation from combination therapy (1.0 versus 2.0 days; P = 0.03) and antipseudomonal beta-lactams (2.2 versus 2.7 days; P = 0.04) was further augmented during phase 2 compared to phase 1 of the postintervention period. Implementation of an antimicrobial stewardship program and RDT intervention bundle in a multihospital health care system is associated with improved appropriateness of EAT for GNBSI and decreased utilization of BSAA through early de-escalation.


2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S61-S61
Author(s):  
Evan D Robinson ◽  
Heather L Cox ◽  
April E Attai ◽  
Lindsay Donohue ◽  
Megan Shah ◽  
...  

Abstract Background Implementation of the Accelerate PhenoTM Gram-negative platform (AXDX) paired with ASP intervention projects to improve time to definitive institutional-preferred antimicrobial therapy (IPT). However, few data describe the impact of discrepant RDT results from standard of care (SOC) methods on antimicrobial prescribing. Here we evaluate the prescribing outcomes for discrepant results following the first year of AXDX + ASP implementation. Methods Consecutive, non-duplicate blood cultures for adult inpatients with GNB BSI following combined RDT + ASP intervention were included (July 2018 – July 2019). AXDX results were emailed to the ASP in real time then released into the EMR upon ASP review and communication with the treating team. SOC identification (ID; Vitek® MS/Vitek® 2) and antimicrobial susceptibility testing (AST; Trek SensititreTM) followed RDT as the reference standard. IPT was defined as the narrowest susceptible beta-lactam, and a discrepancy was characterized when there was categorical disagreement between RDT and SOC methods. When IPT by AXDX was found to be non-susceptible on SOC, this was characterized as “false susceptible“. Conversely, “false resistance” was assessed when a narrower-spectrum agent was susceptible by SOC. Results were also deemed discrepant when the AXDX provided no/incorrect ID for on-panel organisms, no AST, or a polymicrobial specimen was missed. Results Sixty-nine of 250 patients (28%) had a discrepancy in organism ID or AST: false resistance (9%), false susceptible (5%), no AST (5%), no ID (4%), incorrect ID (2%), and missed polymicrobial (2%). A prescribing impact occurred in 55% of cases (Table 1), where unnecessarily broad therapy was continued most often. Erroneous escalation (7%) and de-escalation to inactive therapy (7%) occurred less frequently. In-hospital mortality occurred in 4 cases, none of which followed an inappropriate transition to inactive therapy. Conclusion Though the AXDX platform provides rapid ID and AST results, close coordination with Clinical Microbiology and continued ASP follow up are needed to optimize therapy. Although uncommon, the potential for erroneous ASP recommendations to de-escalate to inactive therapy following AXDX results warrants further investigation. Disclosures Amy J. Mathers, MD, D(ABMM), Accelerate Diagnostics (Consultant)


Sign in / Sign up

Export Citation Format

Share Document