Recasting the Paradox through a Framework of Ecosystem Management Regimes

Author(s):  
Michel J. G. van Eeten ◽  
Emery Roe

We now provide a parsimonious framework for recasting the paradox so that it can be acted on. Our framework of ecosystem management regimes is used in the following chapters to resolve the impasse between ecologists and engineers. In so doing, it integrates engineering more positively into ecosystem management than is currently done. The goal of ecosystem management is a twofold recoupling: where decision makers are managing for reliable ecosystem services, they are also improving the associated ecological functions; and where they are managing for improved ecological functions, they are better ensuring the reliability of ecosystem services associated with those functions. In practice, improvements in ecosystem functions may range from preservation or restoration of self-sustaining processes to the rehabilitation of functions by reintroducing to the ecosystem something like the complexity and unpredictability they once had. The recoupling of functions and services that have been improved varies by the type of management (more formally, the management regime) relied on by decision makers, where the principal task facing the decision maker is to best match the management regime to the ecosystem in question. A “regime” can be thought of as a distinct and coherent way of perceiving, learning, and behaving in terms of variables discussed more frilly below and summarized in table 4.3 at the end of this chapter (for more on policy and ecological regimes in ecosystem management, see Norton 1995, p. 134; Berry et al. 1998; for a discussion of regime theory, see Kratochwil and Ruggie 1986). To summarize our argument, while ecosystems are internally dynamic and complex, they also vary along a gradient in terms of their human population densities, extraction, and other significant features discussed in chapter 3, such as differing models, competing organization, and multiple-use demands. In response to changes along the gradient, ecosystem management passes through thresholds (the most important being limits to learning) as decision makers move from one management regime to another. The thresholds, in fact, are best thought of as gradual transitions between modes and models of learning about ecosystems.

2021 ◽  
pp. 030913252199391
Author(s):  
Sara H Nelson ◽  
Patrick Bigger

The assertion that ‘ecosystems are infrastructure’ is now common in conservation science and ecosystem management. This article interrogates this infrastructural ontology, which we argue underpins diverse practices of conservation investment and ecosystem management focused on the strategic management of ecosystem functions to sustain and secure human life. We trace the genealogies and geographies of infrastructural nature as an ontology and paradigm of investment that coexists (sometimes in tension) with extractivist commodity regimes. We draw links between literatures on the political economy of ecosystem services and infrastructure and highlight three themes that hold promise for future research: labor, territory, and finance.


Author(s):  
Michel J. G. van Eeten ◽  
Emery Roe

To recapitulate, the hard paradox is this: how do you improve ecological functions and related human services at the same time, if not everywhere then at least over the ecosystem and landscape as a whole? How do decision makers meet the twofold recoupling goal: (1) where they are managing for reliable ecosystem services, they would also be improving the associated ecosystem functions, and/or (2) where they are managing for improved ecosystem functions, they would also be better ensuring the reliability of the ecosystem services associated with those functions. In short, how do decision makers recouple ecosystem functions and services that over time have been decoupled to their detriment? A set of terms have just been introduced that require explanation. The terms “recoupling,” “decoupling,” and, by implication, “coupling” are central to the arguments of our book and are formalized more fully in later chapters. (The controversial terms, “functions” and “services,” are discussed in the next section.) Basically, the literature uses the former terms to refer to biophysical connections, organizational connections, or both. An example of the first is Ausubel (1996, pp. 1, 7, 8), who notes that agricultural modernization has meant “food decoupled from acreage” through the production of more crops on less land. Advances in science and technology “increasingly decouple our goods and services from the demands on planetary resources.” Ausubel adds that we can expect “further decoupling [of] food from land. For more green occupations, today’s farmers might become tomorrow’s park rangers and ecosystem guardians. In any case, the rising yields, spatial contraction of agriculture, and sparing of land are a powerful antidote to the current losses of biodiversity and related environmental ills.” Opschoor (1995) speaks of a similar technological phenomenon, “delinking,” where rising incomes are decoupled over time from intensive material use. Also, the third Dutch national environmental policy plan seeks as one of its goals the decoupling of economic growth from environmental pollution (Ministry of Housing, Spatial Planning and Environment 1998). These uses of “decoupling” all refer to the relation between services and environmental degradation. We, on the other hand, are talking about the relation between services and environmental assets, that is, ecosystem functions.


2019 ◽  
Vol 12 (1) ◽  
pp. 295 ◽  
Author(s):  
Bin Fu ◽  
Pei Xu ◽  
Yukuan Wang ◽  
Yingman Guo

Ecological management based on the ecosystem approach promotes ecological protection and the sustainable use of natural resources. We developed a quantitative approach to identify the ecological function zones at the country-scale, through integrating supply and demand of ecosystem services. We selected the biologically diverse hotspot of Baoxing County, which forms a part of the Sichuan Giant Panda World Heritage Site, to explore the integration of ecosystem services supply and demand for ecosystem management. Specifically, we assessed the various support, provision, regulating, and cultural services as classified by the Millennium Ecosystem Assessment. We applied the InVEST (Integrated Valuation of Ecosystem Services and Trade-offs) model to spatially map habitat quality, water retention, and carbon sinks, and used statistical data to evaluate food products, animal husbandry, and product supply services. We then quantified the demands for these services in terms of population, protected species, hydropower, water, and land use. The relationship between areas of supply and areas of demand was discussed for each township, and the spatial variability in the supply–demand relationship was also considered. As a result, we spatially divided the county into six ecological functional areas, and the linkages between each region were comprehensively discussed. This study thus provides a detailed methodology for the successful implementation of an ecosystem management framework on a county-scale based on the spatial partitioning of supply and demand.


2021 ◽  
Vol 9 (2) ◽  
pp. 147
Author(s):  
James A. Pollard ◽  
Elizabeth K. Christie ◽  
Susan M. Brooks ◽  
Tom Spencer

Gravel barriers represent physiographic, hydrographic, sedimentary, and ecological boundaries between inshore and open marine offshore environments, where they provide numerous important functions. The morphosedimentary features of gravel barriers (e.g., steep, energy reflective form) have led to their characterization as effective coastal defense features during extreme hydrodynamic conditions. Consequently, gravel barriers have often been intensively managed to enhance coastal defense functions. The Blakeney Point Barrier System (BPBS), U.K., is one such example, which offers the opportunity to investigate the impact of alternative management regimes under extreme hydrodynamic conditions. The BPBS was actively re-profiled along its eastern section from the 1950s to the winter of 2005, whilst undergoing no active intervention along its western section. Combining an analysis of remotely sensed elevation datasets with numerical storm surge modeling, this paper finds that interventionist management introduces systemic differences in barrier morphological characteristics. Overly steepened barrier sections experience greater wave run-up extents during storm surge conditions, leading to more extreme morphological changes and landward barrier retreat. Furthermore, while high, steep barriers can be highly effective at preventing landward flooding, in cases where overwashing does occur, the resultant landward overtopping volume is typically higher than would be the case for a relatively lower crested barrier with a lower angled seaward slope. There is a growing preference within coastal risk management for less interventionist management regimes, incorporating natural processes. However, restoring natural processes does not immediately or inevitably result in a reduction in coastal risk. This paper contributes practical insights regarding the time taken for a previously managed barrier to relax to a more natural state, intermediary morphological states, and associated landward water flows during extreme events, all of which should be considered if gravel barriers are to be usefully integrated into broader risk management strategies.


Author(s):  
Ján Černecký ◽  
Jana Špulerová ◽  
Viktória Ďuricová ◽  
Peter Mederly ◽  
Martin Jančovič ◽  
...  

One Ecosystem ◽  
2020 ◽  
Vol 5 ◽  
Author(s):  
Ioannis Vogiatzakis ◽  
Savvas Zotos ◽  
Vassilis Litskas ◽  
Paraskevi Manolaki ◽  
Dimitrios Sarris ◽  
...  

Ecosystems deliver a range of services that are important for human well-being. Although Ecosystem Services (ES) assessments have been carried out worldwide in different geographical areas, islands are still under-represented. This research presents the first set of indicators developed for Mapping and Assessment of Ecosystems and their Services (MAES) provided by the ecosystems of Cyprus, as required by the EU Biodiversity Strategy, along with the rationale behind the selection criteria. In total, 269 potential indicators were assessed in terms of data availability at the national/subnational level and their suitability for MAES and were classified using a "traffic light" system on the basis of overall suitability (i.e. conceptually and in terms of datasets). The results showed that 89 indicators (Green indicators) can be directly used for assessing ES in Cyprus. Amongst these 89 Green indicators, 28 are considered to be new additions to the EU MAES list, since they were proposed solely for Cyprus ecosystems, as a result of consultation with local stakeholders. Provisioning and cultural services could be adequately mapped, but lack of data was observed for several regulating services (e.g. erosion, pollution, carbon sequestration). Not all Green indicators, identified herein, are relevant for assessing ES provided by ecosystems in Cyprus, whereas Green indicators which measure similar ES might be redundant. For a given geographical context, there might be relevant (and important) indicators which are not included in the MAES list and this is why consultation with stakeholders is advisable. Knowledge gaps and needs for further improving MAES on the island are also discussed.


2018 ◽  
Vol 30 ◽  
pp. 1-39 ◽  
Author(s):  
Claudia Gutierrez-Arellano ◽  
Mark Mulligan

Land use and cover change (LUCC) is the main cause of natural ecosystem degradation and biodiversity loss and can cause a decrease in ecosystem service provision. Animal populations are providers of some key regulation services: pollination, pest and disease control and seed dispersal, the so-called faunal ecosystem services (FES). Here we aim to give an overview on the current and future status of regulation FES in response to change from original habitat to agricultural land globally. FES are much more tightly linked to wildlife populations and biodiversity than are most ecosystem services, whose determinants are largely climatic and related to vegetation structure. Degradation of ecosystems by land use change thus has much more potential to affect FES. In this scoping review, we summarise the main findings showing the importance of animal populations as FES providers and as a source of ecosystem disservices; underlying causes of agriculturalisation impacts on FES and the potential condition of FES under future LUCC in relation to the expected demand for FES globally. Overall, studies support a positive relationship between FES provision and animal species richness and abundance. Agriculturalisation has negative effects on FES providers due to landscape homogenisation, habitat fragmentation and loss, microclimatic changes and development of population imbalance, causing species and population losses of key fauna, reducing services whilst enhancing disservices. Since evidence suggests an increase in FES demand worldwide is required to support increased farming, it is imperative to improve the understanding of agriculturalisation on FES supply and distribution. Spatial conservation prioritisation must factor in faunal ecosystem functions as the most biodiversity-relevant of all ecosystem services and that which most closely links sites of service provision of conservation value with nearby sites of service use to provide ecosystem services of agricultural and economic value.


2016 ◽  
Vol 113 (7) ◽  
pp. 1760-1765 ◽  
Author(s):  
Stephen M. Posner ◽  
Emily McKenzie ◽  
Taylor H. Ricketts

Research about ecosystem services (ES) often aims to generate knowledge that influences policies and institutions for conservation and human development. However, we have limited understanding of how decision-makers use ES knowledge or what factors facilitate use. Here we address this gap and report on, to our knowledge, the first quantitative analysis of the factors and conditions that explain the policy impact of ES knowledge. We analyze a global sample of cases where similar ES knowledge was generated and applied to decision-making. We first test whether attributes of ES knowledge themselves predict different measures of impact on decisions. We find that legitimacy of knowledge is more often associated with impact than either the credibility or salience of the knowledge. We also examine whether predictor variables related to the science-to-policy process and the contextual conditions of a case are significant in predicting impact. Our findings indicate that, although many factors are important, attributes of the knowledge and aspects of the science-to-policy process that enhance legitimacy best explain the impact of ES science on decision-making. Our results are consistent with both theory and previous qualitative assessments in suggesting that the attributes and perceptions of scientific knowledge and process within which knowledge is coproduced are important determinants of whether that knowledge leads to action.


Sign in / Sign up

Export Citation Format

Share Document