Climate and Hydrologic Variations and Implications for Lake and Stream Ecological Response in the McMurdo Dry Valleys, Antarctica

Author(s):  
Kathleen A. Welch ◽  
W. Berry Lyons

Because polar regions may amplify what would be considered small to moderate climate changes at lower latitudes, Weller (1998) proposed that the monitoring of high latitude regions should yield early evidence of global climate change. In addition to the climate changes themselves, the connections between the polar regions and the lower latitudes have recently become of great interest to meteorologists and paleoclimatologists alike. In the southern polar regions, the direct monitoring of important climatic variables has taken place only for the last few decades, largely because of their remoteness. This of course limits the extent to which polar records can be related to low latitude records, even at multiyear to decadal timescales. Climatologists and ecologists are faced with the problem that, even though these high latitude regions may provide important clues to global climatic change, the lengths of available records are relatively short. The McMurdo Dry Valleys Long-Term Ecological Research (MCM LTER) program was established in 1993. This program built on the monitoring begun in the late 1960s by researchers from New Zealand, who collected records of climate, lake level, and stream discharge in the Wright Valley, Antarctica. Griffith Taylor’s field party obtained the first data related to lake level in 1903 as part of Scott’s Discovery expedition. Analysis of the more recent data from the New Zealand Antarctic and MCM LTER programs when compared to the 1903 datum indicates that the first half of the twentieth century was a period of steadily increasing streamflows, followed in the last half of the century by streamflows that have resulted in more slowly increasing or stable lake levels (Bomblies et al. 2001). Thus, meteorological and hydrological records generated by the MCM LTER research team, when coupled with past data and the ecological information currently being obtained, provide the first detailed attempt to understand the connection between ecosystem structure and function and climatic change in this region of Antarctica. In addition, the program helps to fill an important gap in the overall understanding of climatic variability in Antarctica.

2020 ◽  
Vol 12 (2) ◽  
pp. 1117-1122
Author(s):  
Adrian Howkins ◽  
Stephen M. Chignell ◽  
Poppie Gullett ◽  
Andrew G. Fountain ◽  
Melissa Brett ◽  
...  

Abstract. Over the last half century, the McMurdo Dry Valleys (MDV) of East Antarctica have become a globally important site for scientific research and environmental monitoring. Historical data can make important contributions to current research activities and environmental management in Antarctica but tend to be widely scattered and difficult to access. We address this need in the MDV by compiling over 5000 historical photographs, sketches, maps, oral interviews, publications, and other archival resources into an online digital archive. The data have been digitized and georeferenced using a standardized metadata structure, which enables intuitive searches and data discovery via an online interface. The ultimate aim of the archive is to create as comprehensive as possible a record of human activity in the MDV to support ongoing research, management, and conservation efforts. This is a valuable tool for scientists seeking to understand the dynamics of change in lakes, glaciers, and other physical systems, as well as humanistic inquiry into the history of the Southern Continent. In addition to providing benchmarks for understanding change over time, the data can help target field sampling for studies working under the assumption of a pristine landscape by enabling researchers to identify the date and extent of past human activities. The full database is accessible via a web browser-based interface hosted by the McMurdo Long Term Ecological Research site: http://mcmurdohistory.lternet.edu/ (last access: 5 May 2020). The complete metadata data for all resources in the database are also available at the Environmental Data Initiative: https://doi.org/10.6073/pasta/6744cb28a544fda827805db123d36557 (Howkins et al., 2019).


2021 ◽  
Vol 9s6 ◽  
pp. 61-89
Author(s):  
Adrian Howkins ◽  
Stephen Chignell ◽  
Andrew Fountain

This article uses the history of New Zealand�s Vanda Station in Antarctica as a case study of the inseparability of human history and environmental change in the age of the Anthropocene. Vanda Station was built in the late 1960s to promote New Zealand�s sovereignty claims to Antarctica and to promote scientific research in the predominantly ice-free McMurdo Dry Valleys region. Over the course of the 1970s and 1980s, the levels of the nearby Lake Vanda rose dramatically, and in the early 1990s the decision was taken to close the station. Rather than seeing the closure of Vanda simply as a consequence of the rising lake levels, this article suggests instead that it was the result of a number of interconnected social, political, scientific, and environmental factors. Although the concept of the Anthropocene is not unproblematic, a biographical approach to the history of Vanda Station can add depth and nuance to our understanding of the geological age of humans. In the McMurdo Dry Valleys, the �birth�, �life� and �death� of Vanda Station helps to demonstrate how the political status quo maintained itself through a partial adaptation to the new realities of the Anthropocene. This political adaptation, however, relies on maintaining human-nature dichotomies and resisting the full implications of viewing the region as an eco-social system.


2020 ◽  
Author(s):  
Livio Ruggiero ◽  
Alessandra Sciarra ◽  
Adriano Mazzini ◽  
Claudio Mazzoli ◽  
Valentina Romano ◽  
...  

<p>Current global climate changes represent a threat for the stability of the polar regions and may result in cascading broad impacts. Studies conducted on permafrost in the Arctic regions indicate that these areas may store almost twice the carbon currently present in the atmosphere. Therefore, permafrost thawing may potentially cause a significant increase of greenhouse gases concentrations in the atmosphere, exponentially rising the global warming effect. Although several studies have been carried out in the Arctic regions, there is a paucity of data available from the Southern Hemisphere. The Seneca project aims to fill this gap and to provide a first degree of evaluations of gas concentrations and emissions from permafrost and/or thawed shallow strata of the Dry Valleys in Antarctica. The Taylor and Wright Dry Valleys represent one of the few Antarctic areas that are not covered by ice and therefore represent an ideal target for permafrost investigations.</p><p>Here we present the preliminary results of a multidisciplinary field expedition conducted during the Antarctic summer in the Dry Valleys, aimed to collect and analyse soil gas and water samples, to measure CO<sub>2</sub> and CH<sub>4</sub> flux exhalation, to investigate the petrological soil properties, and to acquire geoelectrical profiles. The obtained data are used to 1) derive a first total emission estimate for methane and carbon dioxide in this part of the Southern Polar Hemisphere, 2) locate the potential presence of geological discontinuities that can act as preferential gas pathways for fluids release, and 3) investigate the mechanisms of gas migration through the shallow sediments. These results represent a benchmark for measurements in these climate sensitive regions where little or no data are today available.</p>


1996 ◽  
Vol 8 (1) ◽  
pp. 49-59 ◽  
Author(s):  
Jenny Webster ◽  
Ian Hawes ◽  
Malcolm Downes ◽  
Michael Timperley ◽  
Clive Howard-Williams

Lake Wilson, a perennially ice-capped, deep (>100 m) lake at 80°S in southern Victoria Land was investigated in January 1993. Water chemistry and physical structure showed three distinct layers; an upper c. 35 m mixed layer of low salinity, moderately turbid water; a less turbid mid layer, 20 m thick of slightly higher salinity and supersaturated with oxygen; and a deep 20 m brackish layer (conductivity c. 4000 μS cm−1) with anoxic conditions in the lower 5 m. Extreme supersaturation of N2O (up to 400 times air saturation) together with high nitrate concentration (4000 mg m−3) was recorded in the deep layer. Phytoplankton biomass and photosynthetic activity was confined to the upper mixed layer and the band of supersaturated dissolved oxygen located at 40–55 m appears to represent a relict layer from when the lake level was lower. The evidence from a comparison of profiles between 1975 and 1993 suggests that Lake Wilson has risen 25 m since 1975, synchronous with a period of lake level rise in the McMurdo Dry Valleys lakes to the north at 77°S. Geochemical diffusion models indicate that Lake Wilson had evaporated to a smaller brine lake about 1000 yrs BP, which also fits the pattern shown by the McMurdo Dry Valleys lakes. Climate changes influencing lake levels have thus covered a wide area of southern Victoria Land.


2020 ◽  
Author(s):  
Adrian Howkins ◽  
Stephen M. Chignell ◽  
Poppie Gullett ◽  
Andrew G. Fountain ◽  
Melissa Brett ◽  
...  

Abstract. Over the last half century, the McMurdo Dry Valleys (MDV) of East Antarctica have become a globally important site for scientific research and environmental monitoring. Historical data can make important contributions to current research activities and environmental management in Antarctica, but tend to be widely scattered and difficult to access. We address this need in the MDV by compiling over 5,000 historical photographs, sketches, maps, oral interviews, publications, and other archival resources into an online digital archive. The data have been digitized and georeferenced using a standardized metadata structure, which enables intuitive searches and data discovery via an online interface. The ultimate aim of the archive is to create as comprehensive as possible a record of human activity in the MDV to support ongoing research, management, and conservation efforts. This is a valuable tool for scientists seeking to understand the dynamics of change in lakes, glaciers, and other physical systems, as well as humanistic inquiry into the history of the Southern Continent. In addition to providing benchmarks for understanding change over time, the data can help target field sampling for studies working under the assumption of a pristine landscape by enabling researchers to identify the date and extent of past human activities. The full database is accessible via a web browser-based interface hosted by the McMurdo Long Term Ecological Research site: http://mcmurdohistory.lternet.edu/ and the raw data are available at the Environmental Data Initiative https://doi.org/10.6073/pasta/6744cb28a544fda827805db123d36557 (Howkins et al., 2019).


2008 ◽  
Vol 20 (5) ◽  
pp. 499-509 ◽  
Author(s):  
Peter T. Doran ◽  
Christopher P. McKay ◽  
Andrew G. Fountain ◽  
Thomas Nylen ◽  
Diane M. McKnight ◽  
...  

AbstractThe meteorological characteristics and hydrological response of an extreme warm, and cold summer in the McMurdo Dry Valleys are compared. The driver behind the warmer summer conditions was the occurrence of down-valley winds, which were not present during the colder summer. Occurrence of the summer down-valley winds coincided with lower than typical mean sea level pressure in the Ross Sea region. There was no significant difference in the amount of solar radiation received during the two summers. Compared to the cold summer, glaciological and hydrological response to the warm summer in Taylor Valley included significant glacier mass loss, and 3- to nearly 6000-fold increase in annual streamflow. Lake levels decreased slightly during the cold summer, and increased between 0.54 and 1.01 m during the warm summer, effectively erasing the prior 14 years of lake level lowering in a period of three months. Lake level rise during the warm summer was shown to be strongly associated with and increase in degree days above freezing at higher elevations. We suggest that strong summer down-valley winds may have been responsible for the generation of large glacial lakes during the Last Glacial Maximum when ice core records recorded annual temperatures significantly colder than present.


Polar Record ◽  
2015 ◽  
Vol 52 (1) ◽  
pp. 16-65 ◽  
Author(s):  
Trevor Chinn ◽  
Peter Mason

ABSTRACTThis paper summarises the first 25 years of data on hydrological work carried out each summer on the Onyx River, Wright Valley, by summer teams of field hydrologists of the New Zealand Antarctic Research Programme. The assignment expanded from the single water-level recording weir site near Lake Vanda to a second site near the Wright Lower Glacier together with a number of tributary stream measurements that were installed as the programme progressed. This work was carried out together with Dry Valleys lake level and glacial measurements and is as of much historical as of scientific interest as it contains much inaugural Antarctic hydrology work.


2019 ◽  
Vol 5 (12) ◽  
pp. eaaw2610 ◽  
Author(s):  
Margaret S. Jackson ◽  
Meredith A. Kelly ◽  
James M. Russell ◽  
Alice M. Doughty ◽  
Jennifer A. Howley ◽  
...  

Atmospheric greenhouse gas concentrations are thought to have synchronized global temperatures during Pleistocene glacial–interglacial cycles, yet their impact relative to changes in high-latitude insolation and ice-sheet extent remains poorly constrained. Here, we use tropical glacial fluctuations to assess the timing of low-latitude temperature changes relative to global climate forcings. We report 10Be ages of moraines in tropical East Africa and South America and show that glaciers reached their maxima at ~29 to 20 ka, during the global Last Glacial Maximum. Tropical glacial recession was underway by 20 ka, before the rapid CO2 rise at ~18.2 ka. This “early” tropical warming was influenced by rising high-latitude insolation and coincident ice-sheet recession in both polar regions, which lowered the meridional thermal gradient and reduced tropical heat export to the high latitudes.


2010 ◽  
Vol 22 (6) ◽  
pp. 662-672 ◽  
Author(s):  
Kathleen A. Welch ◽  
W. Berry Lyons ◽  
Carla Whisner ◽  
Christopher B. Gardner ◽  
Michael N. Gooseff ◽  
...  

AbstractStreams in the McMurdo Dry Valleys, Antarctica, flow during the summer melt season (4–12 weeks) when air temperatures are close to the freezing point of water. Because of the low precipitation rates, streams originate from glacial meltwater and flow to closed-basin lakes on the valley floor. Water samples have been collected from the streams in the Dry Valleys since the start of the McMurdo Dry Valleys Long-Term Ecological Research project in 1993 and these have been analysed for ions and nutrient chemistry. Controls such as landscape position, morphology of the channels, and biotic and abiotic processes are thought to influence the stream chemistry. Sea-salt derived ions tend to be higher in streams that are closer to the ocean and those streams that drain the Taylor Glacier in western Taylor Valley. Chemical weathering is an important process influencing stream chemistry throughout the Dry Valleys. Nutrient availability is dependent on landscape age and varies with distance from the coast. The streams in Taylor Valley span a wide range in composition and total dissolved solids and are surprisingly similar to a wide range of much larger temperate and tropical river systems.


Sign in / Sign up

Export Citation Format

Share Document