Microbial Processes in the Alaskan Boreal Forest

Author(s):  
Joshua P. Schimel ◽  
F. Stuart Chapin III

Forest ecosystems typically occur in moderate environments where growing season rainfall is adequate to support tree growth and where nongrowing season conditions are not too extreme. The Alaskan boreal forests, however, occur at the limit of the forest biome, in an environment that is climatically extreme, with strong physical gradients. The seasonal variation in temperature is among the greatest on earth, with winter temperatures as low as –50ºC and summer growing season temperatures that can reach +30ºC (Chapter 4). The growing season is short, the climate is semi-arid, and growing season rainfall is limited. Forests exist in the region because evapotranspiration is also limited. Steep south-facing slopes can be too dry to support tree growth (Chapter 6). In contrast, in flat, low-lying areas, low evapotranspiration combined with permafrost produces wetlands despite the low rainfall. Regular drought makes the forest highly susceptible to fires. At large scales (many square kilometers), the boreal forest experiences regular, extensive fires that destroy whole stands, resetting succession (Chapter 17). This regular fire cycle produces a patchwork mosaic of forest stands in different successional stages across the landscape (Dyrness et al. 1986, Kasischke and Stocks 2000; Chapter 7). In large rivers (e.g., the Tanana), the cutting and filling of meander loops washes away some forest stands while depositing new silt bars for colonization and succession (Zasada 1986). At the landscape scale, the biogeochemical cycles in the boreal forest are therefore dominated by landscape structure (e.g., dry uplands vs. wet lowlands) and by disturbance (particularly fire). At smaller scales, however, the strong feedbacks between plant and soil processes control much of the functioning of individual forest stands, and possibly the rate of transition among successional stages. In this chapter, we discuss how microbial processes in the boreal forest produce unusual patterns of nutrient cycling that drive the overall functioning of boreal forest stands. Figure 14.1 illustrates the linkages between plant and microbial communities that dominate the functioning of the boreal forest soil system. In the feedbacks between plant and soil processes, plants drive the loop largely through inputs of organic materials.

2019 ◽  
Vol 25 (10) ◽  
pp. 3462-3471 ◽  
Author(s):  
Xianliang Zhang ◽  
Rubén D. Manzanedo ◽  
Loïc D'Orangeville ◽  
Tim T. Rademacher ◽  
Junxia Li ◽  
...  

2018 ◽  
Vol 18 (2) ◽  
pp. 1363-1378 ◽  
Author(s):  
Wu Sun ◽  
Linda M. J. Kooijmans ◽  
Kadmiel Maseyk ◽  
Huilin Chen ◽  
Ivan Mammarella ◽  
...  

Abstract. Soil is a major contributor to the biosphere–atmosphere exchange of carbonyl sulfide (COS) and carbon monoxide (CO). COS is a tracer with which to quantify terrestrial photosynthesis based on the coupled leaf uptake of COS and CO2, but such use requires separating soil COS flux, which is unrelated to photosynthesis, from ecosystem COS uptake. For CO, soil is a significant natural sink that influences the tropospheric CO budget. In the boreal forest, magnitudes and variabilities of soil COS and CO fluxes remain poorly understood. We measured hourly soil fluxes of COS, CO, and CO2 over the 2015 late growing season (July to November) in a Scots pine forest in Hyytiälä, Finland. The soil acted as a net sink of COS and CO, with average uptake rates around 3 pmol m−2 s−1 for COS and 1 nmol m−2 s−1 for CO. Soil respiration showed seasonal dynamics controlled by soil temperature, peaking at around 4 µmol m−2 s−1 in late August and September and dropping to 1–2 µmol m−2 s−1 in October. In contrast, seasonal variations of COS and CO fluxes were weak and mainly driven by soil moisture changes through diffusion limitation. COS and CO fluxes did not appear to respond to temperature variation, although they both correlated well with soil respiration in specific temperature bins. However, COS : CO2 and CO : CO2 flux ratios increased with temperature, suggesting possible shifts in active COS- and CO-consuming microbial groups. Our results show that soil COS and CO fluxes do not have strong variations over the late growing season in this boreal forest and can be represented with the fluxes during the photosynthetically most active period. Well-characterized and relatively invariant soil COS fluxes strengthen the case for using COS as a photosynthetic tracer in boreal forests.


2010 ◽  
Vol 19 (8) ◽  
pp. 1099 ◽  
Author(s):  
Christelle Hély ◽  
C. Marie-Josée Fortin ◽  
Kerry R. Anderson ◽  
Yves Bergeron

Wildfire simulations were carried out using the Prescribed Fire Analysis System (PFAS) to study the effect of landscape composition on fire sizes in eastern Canadian boreal forests. We used the Lake Duparquet forest as reference, plus 13 forest mosaic scenarios whose compositions reflected lengths of fire cycle. Three fire weather risks based on duff moisture were used. We performed 100 simulations per risk and mosaic, with topography and hydrology set constant for the reference. Results showed that both weather and landscape composition significantly influenced fire sizes. Weather related to fire propagation explained almost 79% of the variance, while landscape composition and weather conditions for ignition explained ∼14 and 2% respectively. In terms of landscape, burned area increased with increasing presence of shade-tolerant species, which are related to long fire cycles. Comparisons among the distributions of cumulated area burned from scenarios plus those from the Société de Protection des Forêts contre le Feu database archives showed that PFAS simulated realistic fire sizes using the 80–100% class of probable fire extent. Future analyses would best be performed on a larger region as the limited size of the study area could not capture fires larger than 11 000 ha, which represent 3% of fires but 65% of the total area burned at the provincial scale.


2016 ◽  
Vol 46 (5) ◽  
pp. 696-705 ◽  
Author(s):  
Clémentine Ols ◽  
Annika Hofgaard ◽  
Yves Bergeron ◽  
Igor Drobyshev

To better understand climatic origins of annual tree-growth anomalies in boreal forests, we analysed 895 black spruce (Picea mariana (Mill.) B.S.P.) tree-growth series from 46 xeric sites situated along three latitudinal transects in Eastern Canada. We identified interannual (based on comparison with previous year growth) and multidecadal (based on the entire tree-ring width distribution) growth anomalies between 1901 and 2001 at site and transect levels. Growth anomalies occurred mainly at site level and seldom at larger spatial scales. Both positive interannual and multidecadal growth anomalies were strongly associated with below-average temperatures and above-average precipitation during the previous growing season (Junet–1 – Augustt–1). The climatic signature of negative interannual and multidecadal growth anomalies was more complex and mainly associated with current-year climatic anomalies. Between the early and late 20th century, only negative multidecadal anomalies became more frequent. Our results highlight the role of previous growing season climate in controlling tree growth processes and suggest a positive association between climate warming and increases in the frequency of negative multidecadal growth anomalies. Projected climate change may further favour the occurrence of tree-growth anomalies and enhance the role of site conditions as modifiers of tree response to regional climate change.


2012 ◽  
pp. 109-134
Author(s):  
P. S. Shirokikh ◽  
A. M. Kunafin ◽  
V. B. Martynenko

The secondary birch and aspen forests of middle stages of succession of the central elevated part of the Southern Urals are studied. 4 subassociations, 1 community, and 7 variants in the alliances of Aconito-Piceion and Piceion excelsae are allocated. It is shown that the floristic composition of aspen and birch secondary forests in the age of 60—80 years is almost identical to the natural forests. However, a slight increase the coenotical role of light-requiring species of grasslands and hemiboreal forests in the secondary communities of the class Brachypodio-Betuletea was noticed as well as some reduction of role the shade-tolerant species of nemoral complex and species of boreal forests of the class Vaccinio-Piceetea. Dominant tree layer under the canopy of secondary series is marked by an active growth of natural tree species.


2001 ◽  
Vol 31 (2) ◽  
pp. 208-223 ◽  
Author(s):  
Christopher Potter ◽  
Jill Bubier ◽  
Patrick Crill ◽  
Peter Lafleur

Predicted daily fluxes from an ecosystem model for water, carbon dioxide, and methane were compared with 1994 and 1996 Boreal Ecosystem–Atmosphere Study (BOREAS) field measurements at sites dominated by old black spruce (Picea mariana (Mill.) BSP) (OBS) and boreal fen vegetation near Thompson, Man. Model settings for simulating daily changes in water table depth (WTD) for both sites were designed to match observed water levels, including predictions for two microtopographic positions (hollow and hummock) within the fen study area. Water run-on to the soil profile from neighboring microtopographic units was calibrated on the basis of daily snowmelt and rainfall inputs to reproduce BOREAS site measurements for timing and magnitude of maximum daily WTD for the growing season. Model predictions for daily evapotranspiration rates closely track measured fluxes for stand water loss in patterns consistent with strong controls over latent heat fluxes by soil temperature during nongrowing season months and by variability in relative humidity and air temperature during the growing season. Predicted annual net primary production (NPP) for the OBS site was 158 g C·m–2 during 1994 and 135 g C·m–2 during 1996, with contributions of 75% from overstory canopy production and 25% from ground cover production. Annual NPP for the wetter fen site was 250 g C·m–2 during 1994 and 270 g C·m–2 during 1996. Predicted seasonal patterns for soil CO2 fluxes and net ecosystem production of carbon both match daily average estimates at the two sites. Model results for methane flux, which also closely match average measured flux levels of –0.5 mg CH4·m–2·day–1 for OBS and 2.8 mg CH4·m–2·day–1 for fen sites, suggest that spruce areas are net annual sinks of about –0.12 g CH4·m–2, whereas fen areas generate net annual emissions on the order of 0.3–0.85 g CH4·m–2, depending mainly on seasonal WTD and microtopographic position. Fen hollow areas are predicted to emit almost three times more methane during a given year than fen hummock areas. The validated model is structured for extrapolation to regional simulations of interannual trace gas fluxes over the entire North America boreal forest, with integration of satellite data to characterize properties of the land surface.


Forests ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1015
Author(s):  
Xuan Wu ◽  
Liang Jiao ◽  
Dashi Du ◽  
Changliang Qi ◽  
Ruhong Xue

It is important to explore the responses of radial tree growth in different regions to understand growth patterns and to enhance forest management and protection with climate change. We constructed tree ring width chronologies of Picea crassifolia from different regions of the Qilian Mountains of northwest China. We used Pearson correlation and moving correlation to analyze the main climate factors limiting radial growth of trees and the temporal stability of the growth–climate relationship, while spatial correlation is the result of further testing the first two terms in space. The conclusions were as follows: (1) Radial growth had different trends, showing an increasing followed by a decreasing trend in the central region, a continuously increasing trend in the eastern region, and a gradually decreasing trend in the isolated mountain. (2) Radial tree growth in the central region and isolated mountains was constrained by drought stress, and tree growth in the central region was significantly negatively correlated with growing season temperature. Isolated mountains showed a significant negative correlation with mean minimum of growing season and a significant positive correlation with total precipitation. (3) Temporal dynamic responses of radial growth in the central region to the temperatures and SPEI (the standardized precipitation evapotranspiration index) in the growing season were unstable, the isolated mountains to total precipitation was unstable, and that to SPEI was stable. The results of this study suggest that scientific management and maintenance plans of the forest ecosystem should be developed according to the response and growth patterns of the Qinghai spruce to climate change in different regions of the Qilian Mountains.


Author(s):  
Marc Rhainds ◽  
Ian DeMerchant ◽  
Pierre Therrien

Abstract Spruce budworm, Choristoneura fumiferana Clem. (Lepidoptera: Tortricidae), is the most severe defoliator of Pinaceae in Nearctic boreal forests. Three tools widely used to guide large-scale management decisions (year-to-year defoliation maps; density of overwintering second instars [L2]; number of males at pheromone traps) were integrated to derive pheromone-based thresholds corresponding to specific intergenerational transitions in larval densities (L2i → L2i+1), taking into account the novel finding that threshold estimates decline with distance to defoliated forest stands (DIST). Estimates of thresholds were highly variable between years, both numerically and in terms of interactive effects of L2i and DIST, which limit their heuristic value. In the context of early intervention strategy (L2i+1 > 6.5 individuals per branch), however, thresholds fluctuated within relatively narrow intervals across wide ranges of L2i and DIST, and values of 40–200 males per trap may thus be used as general guideline.


The Condor ◽  
2003 ◽  
Vol 105 (1) ◽  
pp. 27-44 ◽  
Author(s):  
Craig S. Machtans ◽  
Paul B. Latour

Abstract Songbird communities in the boreal forest of the Liard Valley, Northwest Territories, Canada, are described after three years of study. Point count stations (n = 195) were placed in six types of forest (mature deciduous, coniferous, and mixedwood; young forests; wooded bogs; clearcuts) in a 700-km2 area. Vegetation characteristics at each station were also measured. Eighty-five species of birds (59 passerine species) occurred in 11 647 detections. Mixedwood forests had the highest richness of songbirds (∼41 species per 800 individuals) of the six forest types, and contained approximately 30% more individuals than nearly pure coniferous or deciduous forests. Species richness and relative abundance was 10–50% lower than in comparable forests farther south and east, and the difference was most pronounced in deciduous forests. Communities were dominated by a few species, especially Tennessee Warbler (Vermivora peregrina), Magnolia Warbler (Dendroica magnolia), Swainson's Thrush (Catharus ustulatus), Yellow-rumped Warbler (Dendroica coronata) and Chipping Sparrow (Spizella passerina). White-throated Sparrow (Zonotrichia albicollis), a dominant species in boreal forests farther south, was notably scarce in all forests except clearcuts. Clearcuts and wooded bogs had the simplest communities, but had unique species assemblages. Canonical correspondence analysis showed that the bird community was well correlated with vegetation structure. The primary gradient in upland forests was from deciduous to coniferous forests (also young to old, respectively). The secondary gradient was from structurally simple to complex forests. These results allow comparisons with other boreal areas to understand regional patterns and help describe the bird community for conservation purposes. Comunidades de Aves Canoras de Bosques Boreales del Valle de Liard, Territorios del Noroeste, Canadá Resumen. Luego de tres años de estudio, se describen las comunidades de aves canoras de bosques boreales del Valle de Liard, Territorios del Noroeste, Canadá. Se ubicaron estaciones de conteo de punto (n = 195) en seis tipos de bosque (maduro caducifolio, conífero y de maderas mixtas; bosques jóvenes; pantanos arbolados; zonas taladas) en un área de 700 km2. Las características de la vegetación en cada estación también fueron medidas. Se registraron 85 especies de aves (59 especies de paserinas) en 11 647 detecciones. Los bosques mixtos presentaron la mayor riqueza de aves canoras (∼41 especies por 800 individuos) de los seis tipos de bosque, y contuvieron aproximadamente 30% individuos más que los bosques de coníferas y los caducifolios. La riqueza de especies y la abundancia relativa fue 10–50% menor que en bosques comparables más al sur y al este, y la diferencia fue más pronunciada en los bosques caducifolios. Las comunidades estuvieron dominadas por unas pocas especies, especialmente Vermivora peregrina, Dendroica magnolia, Catharus ustulatus, Dendroica coronata y Spizella passerina. Zonotrichia albicollis, una especie dominante en bosques boreales más al sur, fue notablemente escasa en todos los bosques, excepto en las zonas taladas. Las áreas taladas y los pantanos arbolados tuvieron las comunidades más simples, pero presentaron ensamblajes únicos. Análisis de correspondencia canónica mostraron que la comunidad de aves estuvo bien correlacionada con la estructura de la vegetación. El gradiente primario en bosques de zonas altas fue de bosque caducifolio a conífero (también de joven a viejo, respectivamente). El gradiente secundario fue de bosques estructuralmente simples a bosques complejos. Estos resultados permiten hacer comparaciones con otros bosques boreales para entender los patrones regionales y ayudar a describir las comunidades de aves con fines de conservación.


Sign in / Sign up

Export Citation Format

Share Document