The Utricularia-associated microbiome: composition, function, and ecology

Author(s):  
Dagmara Sirová ◽  
Jiří Bárta ◽  
Jakub Borovec ◽  
Jaroslav Vrba

This chapter reviews current advances regarding plant–microbe interactions in aquatic Utricularia. New findings on the composition and function of trap commensals, based mainly on the advances in molecular methods, are presented in the context of the ecological role of Utricularia-associated microorganisms. Bacteria, fungi, algae, and protozoa colonize the Utricularia trap lumen and form diverse, interactive communities. The involvement of these microbial food webs in the regeneration of nutrients from complex organic matter is explained and their potential contribution to the nutrient acquisition in aquatic Utricularia is discussed. The Utricularia–commensal system is suggested to be a suitable model system for studying plant-microbe and microbe-microbe interactions and related ecological questions.

2021 ◽  
Vol 2 (2) ◽  
pp. 311-338
Author(s):  
Giulia Della Rosa ◽  
Clarissa Ruggeri ◽  
Alessandra Aloisi

Exosomes (EXOs) are nano-sized informative shuttles acting as endogenous mediators of cell-to-cell communication. Their innate ability to target specific cells and deliver functional cargo is recently claimed as a promising theranostic strategy. The glycan profile, actively involved in the EXO biogenesis, release, sorting and function, is highly cell type-specific and frequently altered in pathological conditions. Therefore, the modulation of EXO glyco-composition has recently been considered an attractive tool in the design of novel therapeutics. In addition to the available approaches involving conventional glyco-engineering, soft technology is becoming more and more attractive for better exploiting EXO glycan tasks and optimizing EXO delivery platforms. This review, first, explores the main functions of EXO glycans and associates the potential implications of the reported new findings across the nanomedicine applications. The state-of-the-art of the last decade concerning the role of natural polysaccharides—as targeting molecules and in 3D soft structure manufacture matrices—is then analysed and highlighted, as an advancing EXO biofunction toolkit. The promising results, integrating the biopolymers area to the EXO-based bio-nanofabrication and bio-nanotechnology field, lay the foundation for further investigation and offer a new perspective in drug delivery and personalized medicine progress.


2019 ◽  
Author(s):  
Diana J. Rennison ◽  
Seth M. Rudman ◽  
Dolph Schluter

AbstractThe processes of local adaptation and ecological speciation are often strongly shaped by biotic interactions such as competition and predation. One of the strongest lines of evidence that biotic interactions drive evolution comes from repeated divergence of lineages in association with repeated changes in the community of interacting species. Yet, relatively little is known about the repeatability of changes in gut microbial communities and their role in adaptation and divergence of host populations in nature. Here we utilize three cases of rapid, parallel adaptation and speciation in freshwater threespine stickleback to test for parallel changes in associated gut microbiomes. We find that features of the gut microbial communities have shifted repeatedly in the same direction in association with parallel divergence and speciation of stickleback hosts. These results suggest that changes to gut microbiomes can occur rapidly and predictably in conjunction with host evolution, and that host-microbe interactions might play an important role in host adaptation and diversification.


2020 ◽  
Vol 5 (43) ◽  
pp. eaau4594 ◽  
Author(s):  
Sarah L. Gaffen ◽  
Niki M. Moutsopoulos

The oral mucosa is a primary barrier site and a portal for entry of microbes, food, and airborne particles into the gastrointestinal tract. Nonetheless, mucosal immunity at this barrier remains understudied compared with other anatomical barrier sites. Here, we review basic aspects of oral mucosal histology, the oral microbiome, and common and clinically significant diseases that present at oral mucosal barriers. We particularly focus on the role of interleukin-17 (IL-17)/T helper 17 (TH17) responses in protective immunity and inflammation in the oral mucosa. IL-17/TH17 responses are highly relevant to maintaining barrier integrity and preventing pathogenic infections by the oral commensal fungus Candida albicans. On the other hand, aberrant IL-17/TH17 responses are implicated in driving the pathogenesis of periodontitis and consequent bone and tooth loss. We discuss distinct IL-17–secreting T cell subsets, emphasizing their regulation and function in oropharyngeal candidiasis and periodontitis.


Cancers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3489
Author(s):  
Youri I. Pavlov ◽  
Anna S. Zhuk ◽  
Elena I. Stepchenkova

Recent studies on tumor genomes revealed that mutations in genes of replicative DNA polymerases cause a predisposition for cancer by increasing genome instability. The past 10 years have uncovered exciting details about the structure and function of replicative DNA polymerases and the replication fork organization. The principal idea of participation of different polymerases in specific transactions at the fork proposed by Morrison and coauthors 30 years ago and later named “division of labor,” remains standing, with an amendment of the broader role of polymerase δ in the replication of both the lagging and leading DNA strands. However, cancer-associated mutations predominantly affect the catalytic subunit of polymerase ε that participates in leading strand DNA synthesis. We analyze how new findings in the DNA replication field help elucidate the polymerase variants’ effects on cancer.


2020 ◽  
Vol 4 (Supplement_1) ◽  
pp. 739-740
Author(s):  
Daniela Drummond-Barbosa

Abstract As organisms age, many changes occur to their physiology, which in turn impact the function of multiple tissues. It is therefore critical to investigate the fundamental mechanisms of how endocrine organs shape our physiology, and how changes in our physiology affect stem cell lineages, which generate new cells for maintenance and repair of tissues/organs throughout life. This symposium will highlight the research in the laboratories of Dr. Gerard Karsenty (Columbia University) on the multiple endocrine functions of bone, of Dr. Nicholas Buchon (Cornell University) on the role of host-microbe interactions in intestinal homeostasis, of Dr. Jane Hubbard (NYU/Skirball Institute) on the physiological control of the germline, and of Dr. Daniela Drummond-Barbosa (Johns Hopkins University) on how diet and adipocyte factors regulate oogenesis. As research by these and other groups illustrate, the complex physiological regulation of tissue/organ maintenance and function is not only a fascinating biological problem, but it also has implications for many diseases and other conditions that are tightly linked to our endocrine state, including aging.


Viruses ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1734
Author(s):  
Janice Mayne ◽  
Xu Zhang ◽  
James Butcher ◽  
Krystal Walker ◽  
Zhibin Ning ◽  
...  

Salmonella infections (salmonellosis) pose serious health risks to humans, usually via food-chain contamination. This foodborne pathogen causes major food losses and human illnesses, with significant economic impacts. Overuse of antibiotics in the food industry has led to multidrug-resistant strains of bacteria, and governments are now restricting their use, leading the food industry to search for alternatives to secure food chains. Bacteriophages, viruses that infect and kill bacteria, are currently being investigated and used as replacement treatments and prophylactics due to their specificity and efficacy. They are generally regarded as safe alternatives to antibiotics, as they are natural components of the ecosystem. However, when specifically used in the industry, they can also make their way into humans through our food chain or exposure, as is the case for antibiotics. In particular, agricultural workers could be repeatedly exposed to bacteriophages supplemented to animal feeds. To our knowledge, no studies have investigated the effects of such exposure to bacteriophages on the human gut microbiome. In this study, we used a novel in-vitro assay called RapidAIM to investigate the effect of a bacteriophage mixture, BAFASAL®, used in poultry farming on five individual human gut microbiomes. Multi-omics analyses, including 16S rRNA gene sequencing and metaproteomic, revealed that ex-vivo human gut microbiota composition and function were unaffected by BAFASAL® treatment, providing an additional measure for its safety. Due to the critical role of the gut microbiome in human health and the known role of bacteriophages in regulation of microbiome composition and function, we suggest assaying the impact of bacteriophage-cocktails on the human gut microbiome as a part of their safety assessment.


2021 ◽  
Author(s):  
Reena Debray ◽  
Yvonne Socolar ◽  
Griffin Kaulbach ◽  
Aidee Guzman ◽  
Catherine A. Hernandez ◽  
...  

ABSTRACTWater and nutrient limitation are key stressors that affect plant health and ecosystem function. These environmental factors impact both soil- and root-associated microbial communities, and systemically alter plant physiology, but it is less clear how they affect aboveground plant-microbe interactions. Through experimental manipulations in the field and growth chamber, we examined the interacting effects of irrigation, soil fertility, and root mycorrhizal associations on bacterial and fungal communities of the tomato phyllosphere (Solanum lycopersicum). Both water stress and mycorrhizal disruption reduced bacterial richness within plants, homogenized bacterial community diversity among plants, and reduced the relative abundance of dominant fungal taxa. We observed striking parallelism in the individual microbial taxa affected by irrigation and mycorrhizal associations. Given the increasingly understood role of the phyllosphere in shaping plant health and pathogen susceptibility, these results offer an additional mechanism by which belowground conditions shape plant fitness.


Author(s):  
Yijun Liu ◽  
Hongyang Zhang ◽  
Xiaojun Tang ◽  
Xuejun Jiang ◽  
Xiaojuan Yan ◽  
...  

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can cause gastrointestinal symptoms in the patients, but the role of gut microbiota in SARS-CoV-2 infection remains unclear. Thus, in this study, we aim to investigate whether SARS-CoV-2 infection affects the composition and function of gut microbiota. In this study, we demonstrated for the first time that significant shifts in microbiome composition and function were appeared in both SARS-CoV-2-infected asymptomatic and symptomatic cases. The relative abundance of Candidatus_Saccharibacteria was significantly increased, whereas the levels of Fibrobacteres was remarkably reduced in SARS-CoV-2-infected cases. There was one bacterial species, Spirochaetes displayed the difference between patients and asymptomatic cases. On the genus level, Tyzzerella was the key species that remarkably increased in both symptomatic and asymptomatic cases. Analyses of genome annotations further revealed SARS-CoV-2 infection resulted in the significant ‘functional dysbiosis’ of gut microbiota, including metabolic pathway, regulatory pathway and biosynthesis of secondary metabolites etc. We also identified potential metagenomic markers to discriminate SARS-CoV-2-infected symptomatic and asymptomatic cases from healthy controls. These findings together suggest gut microbiota is of possible etiological and diagnostic importance for SARS-CoV-2 infection.


2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Paul Copeland ◽  
Michael Vetick

Abstract Objectives We have established a zebrafish model system that will allow unprecedented access to the role of selenoprotein function during development. The work described here focuses on a poorly characterized RNA binding protein that is similar to SECIS binding protein 2 (SBP2), which is required for the co-translational insertion of selenocysteine at select UGA codons in selenoprotein mRNAs. This protein, SECISBP2L, shares many features with SBP2 but is has no known function. We hypothesize that the zebrafish model system will reveal a selenoprotein-synthesis related function for SECISBP2L. Methods Using CRISPR/Cas9, we generated zebrafish with a disruption in one of the conserved domains in SECISBP2L. When bred out to a homozygous mutant animal, we verified that SECISBP2L protein expression was eliminated. To analyze selenoprotein synthesis, we metabolically labeled wild-type and mutant embryos with radioactive selenium (Se-75). Results In terms of overt phenotypes in SECISBP2L null fish, we observed no defects in growth, mobility or fertility. However, we noticed a significant sensitivity to oxidative stress as measured by lethality associated with peroxide exposure. In order to detect changes in selenoprotein expression that may have resulted from SECISBP2L loss, we performed Se-75 labeling in embryos. We also began an investigation of the effect of oxidative stress on selenoprotein expression during development. As such, one set of embryos was treated for 24 hours with 100 nM Se-75 and the other with Se-75 plus 200 μM H2O2. In general, we did not observe an overall alteration of selenoprotein expression as a result of SECISBP2L loss. We did, however, observe a significant spike of expression for a 50 kDa selenoprotein that did not occur in the SECISBP2L null animals. Based on this molecular weight, we predict that this band corresponds to selenophosphate synthase (SEPHS2). In addition, subsequent labeling at later time points revealed a general reduction of selenoprotein expression that may result from reduced SEPHS2 expression because it is essential for selenocysteine-tRNA synthesis. Conclusions We conclude that SECISBP2L is required for optimal selenoprotein expression and its function may be induced by oxidative stress. We have also demonstrated the value of a zebrafish model system for studying the mechanism of selenoprotein synthesis. Funding Sources Funded by the National Institutes of Health.


Sign in / Sign up

Export Citation Format

Share Document