Climate change in other taxa and links to bird studies

Author(s):  
David W. Inouye

Phenological responses to climate change are the most commonly measured responses of plants and animals to climate change, and most studies show that species are advancing the timing of their seasonal activities in response to warming temperatures. Birds interact with a wide range of other species, playing roles as herbivores, predators, prey, and disease hosts. Because the species they interact with are all likely changing phenology and distribution in response to the changing climate, but often at different rates, mismatches with historical patterns are affecting ecological communities in a variety of ways. Unexpected phenomena such as increases in frost damage, and less surprising ones such as developing phenological mismatches between migratory and sedentary species, are discussed as case histories illustrating these changes.

2003 ◽  
Vol 3 (2) ◽  
pp. 87-93 ◽  
Author(s):  
Robert Pincus

The traditional connections between wine and location reflect local climate. Climate change threatens these connections, and vintners have a wide range of responses to this impending problem. This article explores the source of the associations between wines and locales, and outlines the causes for global climate change. Three wine makers describe how they might adapt to a changed climate. Their responses run the gamut from adaptation in the vineyard aimed at maintaining current styles, to radical reinvention of the societal and legal structure of the local wine industry.


2017 ◽  
Author(s):  
Jatin Anand ◽  
Manjula Devak ◽  
Ashwini Kumar Gosain ◽  
Rakesh Khosa ◽  
Chandrika Thulaseedharan Dhanya

Abstract. The negative impacts of climate change are expected to be felt over wide range of spatial scales, ranging from small basins to large watersheds, which can possibly be detrimental to the services that natural water systems provide to the society. The impact assessment of future climate change on hydrologic response is essential for the decision makers while carrying out management and various adaptation strategies in a changing climate. While, the availability of finer scale projections from regional climate models (RCM) has been a boon to study changing climate conditions. These climate models are subjected to large number of uncertainties, which demands a careful selection of an appropriate climate model, however. In an effort to account for these uncertainties and select suitable climate models, a multi-criteria ranking approach is deployed in this study. Ranking of CORDEX RCMs is done based on its ability to generate hydrologic components of the basin, i.e., runoff simulations using Soil Water Assessment Tool (SWAT) model, by deploying Entropy and PROMETHEE-2 methods. The spatial extent of changes in the different components of hydrologic cycle is examined over the Ganga river basin, using the top three ranked RCMs, for a period from January 2021 to December 2100. It is observed that for monsoon months (June, July, August and September), future annual mean surface runoff will decrease substantially (−50 % to −10 %), while the flows for post-monsoon months (October, November and December) are projected to increase (10–20 %). While, extremes are seen to be increasing during the non-monsoon months, a substantial decrease in medium events is also highlighted. The increase in wet extremes is majorly supplemented by the increased snowmelt runoff during those months. Snowmelt is projected to increase during the months of November to March, with the month of December witnessing 3-4 times increase in the flow. Base flow and recharge are alarmingly decreasing over the basin. Major loss of recharge is expected to occur in central part of the basin. The present study offers a more reliable regional hydrologic impact assessment with quantifications of future dramatic changes in different hydrological sub-system and its mass-transfer, which will help in quantifying the changes in hydrological components in response to climate change changes in the major basin Ganga, and shall provide the water managers with substantive information, required to develop ameliorative strategies.


2021 ◽  
Vol 2 (2) ◽  
pp. 63-80
Author(s):  
Stephen Chitengi Sakapaji

Climate change remains a serious global problem posing a wide range of challenges and impacts which will likely hinder the attainment of the widely discussed sustainable development goals (SDGs). The impacts and threats from a changing climate have the potential to significantly impact all sectors of the global economy and will largely be multifaceted, multidimensional, and multi-sectoral. These adverse impacts will to a greater extent, be manifested at the local and community level where the adaptability capacity is weak and resources are scarce. In the last two decades, there has been growing support and evidence that suggests that local people and communities in partnership with their local governments and NGOs are undertaking community ecological based adaptation (CEBA) practices at both the local and community level which are enhancing their adaptability and resilience capacities to a changing climate. CEBA mechanisms are initiatives and practices that local and rural communities across the developing world are sometimes adopting in partnership with their local government and non-governmental organizations to adapt to a changing climate. However, over the years, these initiatives, experiments, and activities have been poorly actualized, communicated, and there is uncertainty on whether these practices and mechanisms are enhancing the adaptability and resilience capacities of the many poor people in these communities. It is from this background that this paper seeks to assess and analyze present and future climate change impacts on agriculture in Central Zambia and further seeks to appraise the effectiveness of CEBA mechanisms being adopted and utilized in this region. Using community assessment and rural appraisal tools this research paper found that indeed some CEBA practices are innovative and effective and are enhancing the adaptability and resilience of the local people in agriculture in this region. The paper recommends that the advancement, funding, and integration of innovative and effective CEBA practices with scientific knowledge and the ultimate replication and incorporation of these practices into developmental and climate change policies can be one of the most beneficial and effective ways for a sustainable, adaptive, and resilient agriculture sector in the face of a changing and unpredictable climate.


Author(s):  
Anna Hurlimann ◽  
Sarah Bell

Some of the most significant impacts of climate change are likely to be felt in water resources management, but climate change is not the only uncertainty facing water managers and policymakers. The concept of water security has emerged to address social, economic, political, and environmental factors, as well as the physical determinants of water availability. There are significant challenges for communicating about water security under a changing climate. Water security shares many of the characteristics of climate change with regards to communication. It is a complex concept involving interactions between dynamic human and natural systems, requiring public deliberation and engagement to inform political debate and to facilitate behavioral and cultural change. Knowledge and values about water and climate change are communicated through material experiences as well as through language. Communication about water security and climate change takes many forms, which can be characterized as five key modes—policy, communication campaigns, media, cultures, and environments. More effective communication about climate change and water is needed across these different modes to support meaningful participation and deliberation in policy decisions by a wide range of stakeholders. Integrating climate change into communication campaigns about water security provides opportunities to challenge and reframe traditional formulations of the role of water in society and culture and how to manage water in human settlements, the economy, and the environment. The central challenge for communicating the impacts of climate change on water scarcity lies in the complex interactions between society, policy, technology, infrastructure, the economy, and the environment in modern water systems. Different modes of communication are useful to enable public and stakeholder engagement in understanding the issues and making decisions about how to ensure water security in a changing society and environment.


2019 ◽  
Vol 282 ◽  
pp. 02081
Author(s):  
Sahar Sahyoun ◽  
Hua Ge ◽  
Maurice Defo ◽  
Michael Lacasse

To mitigate the effects of climate change, higher insulation levels in buildings are mandated by the National Energy Code for Buildings. However, increased insulation levels within building envelopes may lead to a greater risk of moisture problems. With a changing climate, higher rainfall intensity, stronger winds and more storms are expected, which may increase wind-driven rain loads on façade and risks for rain penetration damages of building envelopes. This paper aims to present results of the effects of climate change on the freeze-thaw damage risk of internally insulated brick masonry walls of buildings in different Canadian cities, using different freeze-thaw models. Freeze-thaw damage was evaluated using different freeze-thaw models. Simulations were performed using DELPHIN 5.9.4. Results showed potential risk to freeze-thaw in Montreal and Vancouver after retrofit. Under climate change, Winnipeg has the lowest risk to frost damage, though damage functions showed an increase in the level of severity. Comparing the results of different models under a changing climate, the damage functions seemed in a good agreement for most of the cases, except for the Indicative Freeze-Thaw Cycles (IFTC) evaluated in St-Johns. This model counts the number of freeze-thaw cycles based on short duration of freezing and thawing and therefore does not consider longer freeze-thaw period.


2020 ◽  
Author(s):  
Van-Thanh-Van Nguyen

<p><span>There exists an urgent need to assess the possible impacts of climate change on the Intensity-Duration-Frequency (IDF) relations in general and on the design storm in particular for improving the design of urban water infrastructure in the context of a changing climate. At present, the derivation of IDF relations in the context of climate change at a location of interest has been recognized as one of the most challenging tasks in current engineering practices. The main challenge is how to establish the linkages between the climate projections given by Global Climate Models (GCMs) at the global scale and the observed extreme rainfalls at a given local site. If these linkages could be established, then the projected climate change conditions given by GCMs could be used to predict the resulting changes of local extreme rainfalls and related runoff characteristics.  Consequently, innovative downscaling approaches are needed in the modeling extreme rainfall (ER) processes over a wide range of temporal and spatial scales for climate change impact and adaptation studies in urban areas. Therefore, the overall objective of the present paper is to provide an overview of some recent progress in the modeling of extreme rainfall processes in a changing climate from both theoretical and practical viewpoints. In particular, the main focus of this paper is on recently developed statistical downscaling (SD) methods for linking GCM climate predictors to the observed daily and sub-daily rainfall extremes at a single site as well as at many sites concurrently. In addition, new SD procedures are presented for describing the linkages between GCM outputs and rainfall characteristics at a given location where the rainfall data are limited or unavailable, a common and crucial challenge in engineering practice.</span></p>


2020 ◽  
Vol 12 (4) ◽  
pp. 348-352
Author(s):  
S. Malchev ◽  
S. Savchovska

Abstract. The periods with continuous freezing air temperatures reported during the spring of 2020 (13 incidents) affected a wide range of local and introduced sweet cherry cultivars in the region of Plovdiv. They vary from -0.6°C on March 02 to -4.9°C on March 16-17. The duration of influence of the lowest temperatures is 6 and 12 hours between March 16 and 17. The inspection of fruit buds and flowers was conducted twice (on March 26 and April 08) at different phenological stages after continuous waves of cold weather conditions alternated with high temperatures. During the phenological phase ‘bud burst’ (tight cluster or BBCH 55) some of the flowers in the buds did not develop further making the damage hardly detectable. The most damaged are hybrid El.28-21 (95.00%), ‘Van’ (91.89%) and ‘Bing’ (89.41%) and from the next group ‘Lapins’ (85.98%) and ‘Rosita’ (83.33%). A larger intermediate group form ‘Kossara’ (81.67%), ‘Rozalina’ (76.00%), ‘Sunburst’ (75.00%), ‘Bigarreau Burlat’ (69.11%) and ‘Kuklenska belitza’ (66.67%). Candidate-cultivar El.17-90 ‘Asparuh’ has the lowest frost damage values of 55.00% and El.17-37 ‘Tzvetina’ with damage of 50.60%.


Author(s):  
Sergei Soldatenko ◽  
Sergei Soldatenko ◽  
Genrikh Alekseev ◽  
Genrikh Alekseev ◽  
Alexander Danilov ◽  
...  

Every aspect of human operations faces a wide range of risks, some of which can cause serious consequences. By the start of 21st century, mankind has recognized a new class of risks posed by climate change. It is obvious, that the global climate is changing, and will continue to change, in ways that affect the planning and day to day operations of businesses, government agencies and other organizations and institutions. The manifestations of climate change include but not limited to rising sea levels, increasing temperature, flooding, melting polar sea ice, adverse weather events (e.g. heatwaves, drought, and storms) and a rise in related problems (e.g. health and environmental). Assessing and managing climate risks represent one of the most challenging issues of today and for the future. The purpose of the risk modeling system discussed in this paper is to provide a framework and methodology to quantify risks caused by climate change, to facilitate estimates of the impact of climate change on various spheres of human activities and to compare eventual adaptation and risk mitigation strategies. The system integrates both physical climate system and economic models together with knowledge-based subsystem, which can help support proactive risk management. System structure and its main components are considered. Special attention is paid to climate risk assessment, management and hedging in the Arctic coastal areas.


Author(s):  
Karen J. Esler ◽  
Anna L. Jacobsen ◽  
R. Brandon Pratt

The world’s mediterranean-type climate regions (including areas within the Mediterranean, South Africa, Australia, California, and Chile) have long been of interest to biologists by virtue of their extraordinary biodiversity and the appearance of evolutionary convergence between these disparate regions. Comparisons between mediterranean-type climate regions have provided important insights into questions at the cutting edge of ecological, ecophysiological and evolutionary research. These regions, dominated by evergreen shrubland communities, contain many rare and endemic species. Their mild climate makes them appealing places to live and visit and this has resulted in numerous threats to the species and communities that occupy them. Threats include a wide range of factors such as habitat loss due to development and agriculture, disturbance, invasive species, and climate change. As a result, they continue to attract far more attention than their limited geographic area might suggest. This book provides a concise but comprehensive introduction to mediterranean-type ecosystems. As with other books in the Biology of Habitats Series, the emphasis in this book is on the organisms that dominate these regions although their management, conservation, and restoration are also considered.


The Holocene ◽  
2021 ◽  
pp. 095968362110116
Author(s):  
Maegen L Rochner ◽  
Karen J Heeter ◽  
Grant L Harley ◽  
Matthew F Bekker ◽  
Sally P Horn

Paleoclimate reconstructions for the western US show spatial variability in the timing, duration, and magnitude of climate changes within the Medieval Climate Anomaly (MCA, ca. 900–1350 CE) and Little Ice Age (LIA, ca. 1350–1850 CE), indicating that additional data are needed to more completely characterize late-Holocene climate change in the region. Here, we use dendrochronology to investigate how climate changes during the MCA and LIA affected a treeline, whitebark pine ( Pinus albicaulis Engelm.) ecosystem in the Greater Yellowstone Ecoregion (GYE). We present two new millennial-length tree-ring chronologies and multiple lines of tree-ring evidence from living and remnant whitebark pine and Engelmann spruce ( Picea engelmannii Parry ex. Engelm.) trees, including patterns of establishment and mortality; changes in tree growth; frost rings; and blue-intensity-based, reconstructed summer temperatures, to highlight the terminus of the LIA as one of the coldest periods of the last millennium for the GYE. Patterns of tree establishment and mortality indicate conditions favorable to recruitment during the latter half of the MCA and climate-induced mortality of trees during the middle-to-late LIA. These patterns correspond with decreased growth, frost damage, and reconstructed cooler temperature anomalies for the 1800–1850 CE period. Results provide important insight into how past climate change affected important GYE ecosystems and highlight the value of using multiple lines of proxy evidence, along with climate reconstructions of high spatial resolution, to better describe spatial and temporal variability in MCA and LIA climate and the ecological influence of climate change.


Sign in / Sign up

Export Citation Format

Share Document