Climate change and conservation biology

Author(s):  
Jeremy T. Kerr ◽  
Heather M. Kharouba

It is increasingly recognized that, as a result of ever-growing atmospheric inputs of greenhouse gases like carbon dioxide from the burning of fossil fuels, the climate is changing regionally and globally. This has been affirmed, in light of increasing scientific understanding, in the latest report of the Intergovernmental Panel on Climate Change (IPCC) in 2001, by the US National Academy of Sciences in its 2001 report, and most recently by a statement from the Science Academies of all G8 countries, along with China, India, and Brazil. This latter statement calls on the G8 nations to ‘Identify cost-effective steps that can be taken now to contribute to substantial and longterm reduction in net global greenhouse gas emission [and to] recognize that delayed action will increase the risk of adverse environmental effects and will likely incur a greater cost’. Global warming caused by elevated greenhouse gas levels is expressed with long time lags, which can be difficult to appreciate by those unfamiliar with physical systems. Once in the atmosphere, the characteristic residence time of a carbon dioxide molecule is a century. And the time taken for the ocean’s expansion to come to equilibrium with a given level of greenhouse warming is several centuries. If current trends continue, by around 2050 atmospheric carbon dioxide levels will have reached more than 500 parts per million, which is nearly double pre-industrial levels. The last time our planet experienced levels this high was some 20–40 million years ago, when sea levels were around 100m higher than today. It can also be difficult to relate intuitively to the seriousness of the roughly 0.7 °C average warming of the Earth’s surface over the past century. And the warning by the IPCC in its 2001 report, that global warming would be in the range of 1.4–5.8 °C by the end of this century, may also seem unalarming when we experience such temperature swings from one day to the next. There is, however, a huge difference between daily fluctuations, and global averages sustained year on year; the difference in average global temperature between today and the last ice age is only around 5 °C.

2021 ◽  
Vol 48 (5) ◽  
pp. 328-342
Author(s):  
M. A Adeyemi ◽  
E. O. Akinfala

Greenhouse gases are becoming devastating on agriculture and environment because of its effect on climate and global warming. The aim of this review is to provide update on livestock greenhouse gases emission and rekindle available mitigation strategies. Recently, global warming and climate change have become one of the most discussed issues globally because of their negative effect on ecosystem worldwide. The livestock sub-sector as a major source of greenhouse gas emission, has been identified to contribute substantially to the recent rise in global warming and climate change. Livestock, most importantly ruminants plays a major role in the emission of methane, one of the potent greenhouse gases. This methane is usually released through enteric fermentation in animals and manure management system, though the latter account for smaller quantity. Estimate of methane emission inventory from livestock in Nigeria showed that 96.15 % of methane produced by livestock was by ruminants with cattle alone accounting for 74.06 %. With this background, strategies to date for reducing methane emissions should centre on ruminant. Efforts to reduce methane emissions from enteric fermentation generally focus on options for improving production efficiency. This has been demonstrated with intensive animal production systems. However, in Nigeria, this system has been successful only for non-ruminants while the extensive and semi extensive systems are being practiced for ruminants. In view of this, options for reducing emissions must be selected to be consistent with country-specific circumstances. Those circumstances should include animal management practices (including cultural traditions), nutrition and economic development priorities.     Les gaz à effet de serre deviennent dévastateurs de l'agriculture et de l'environnement en raison de son effet sur le climat et le réchauffement de la planète. L'objectif de cet examen est de fournir une mise à jour sur les stratégies d'atténuation disponibles des gaz à effet de serre de bétail. Récemment, le réchauffement climatique et le changement climatique sont devenus l'une des questions les plus discutées à l'échelle mondiale en raison de leur effet négatif sur l'écosystème mondial. Le sous-secteur de l'élevage en tant que source majeure d'émissions de gaz à effet de serre, a été identifié pour contribuer de manière substantielle à la hausse récente du réchauffement de la planète et du changement climatique. Le bétail, plus important encore, les ruminants jouent un rôle majeur dans l'émission de méthane, l'un des gaz à effet de serre puissants. Ce méthane est généralement libéré par la fermentation entérique chez les animaux et le système de gestion de fumier, bien que ces derniers représentent une plus petite quantité. L'estimation des stocks d'émissions de méthane provenant du bétail au Nigéria a montré que 96,15% de méthane produites par le bétail étaient par des ruminants avec des bovins à eux-mêmes représentant 74,06%. Avec ce contexte, des stratégies à ce jour pour réduire les émissions de méthane doivent être centrées sur le ruminant. Les efforts visant à réduire les émissions de méthane de la fermentation entérique se concentrent généralement sur les options d'amélioration de l'efficacité de la production. Cela a été démontré avec des systèmes de production d'animaux intensifs. Cependant, au Nigéria, ce système n'a abouti que pour les non-ruminants tandis que les systèmes étendus et semi-étendus sont pratiqués pour les ruminants. Compte tenu de cela, les options de réduction des émissions doivent être sélectionnées pour être cohérentes avec des circonstances spécifiques à chaque pays. Ces circonstances devraient inclure des pratiques de gestion des animaux (y compris des traditions culturelles), des priorités de nutrition et de développement économique


2021 ◽  
Vol 894 (1) ◽  
pp. 012005
Author(s):  
I Suryati ◽  
A Farindah ◽  
I Indrawan

Abstract Landfill is a place where waste reaches the final stage. The piles of waste can generate greenhouse gas emissions that cause global warming the potential of climate change. The greenhouse gas emission generates from the piles of waste is CH4 emission. The research purpose is to count CH4 emission in the waste landfill in Medan city located in Terjun, projection CH4 emission for ten years later is 2020-2029 and decisive the effort reduction of CH4 emission. The scenarios of reducing CH4 emission in Terjun waste landfill reduce the potential CH4 emission for ten years later. The calculation of CH4 emission from the piles of waste in Terjun waste landfill using FOD method (First Orde Decay) by IPCC (Intergovernmental Panel on Climate Change) in 2006. In 2019, CH4 emission in Terjun waste landfill was 12,350.750-ton CH4 and had an uplift in 2029 can reach 17,143.087-ton CH4. There are two scenarios for reducing CH4 emission in the Terjun waste landfill; the first is the processing of waste in the source (composting), and the second is reducing the waste by using incineration technology Terjun landfill. The first scenario (composting) can reduce CH4 emission by 14.80%. The second scenario can reduce by 63.37% the CH4 emission in Terjun waste landfill. The chosen alternative scenario for reducing CH4 in the Terjun waste landfill is the first scenario, the processing of waste in the source (composting).


2014 ◽  
Vol 8 (4) ◽  
pp. 225
Author(s):  
Yuztitya Asmaranti ◽  
Lindrianasari Lindrianasari

Indonesia, as a country with high vulnerable to the effects of global climate change due to greenhouse gas emissions, is committed to implementing the Kyoto Protocol by issuing the Law No. 17 of 2004 regulating the ratification of the Kyoto Protocol to the United Nations Framework Convention on Climate Change. On the other hand, Indonesia with the second largest tropical forest in the world is expected to contribute oxygen to protect the world's top greenhouse gas effect as the main cause of global warming. This study aims to provide empirical evidence of the extent to which the response of companies in Indonesia in addressing global warming due to carbon emissions leading to dumping greenhouse gases and what efforts done as a form of corporate social responsibility. This study found that there are differences in the disclosure of carbon emissions before and after the enactment of Indonesian Act No. 17 of 2004. However, the study also found that only about 10% of manufacturing companies in Indonesia have an action associated with a reduction in carbon emissions of the company.


2021 ◽  
Vol 9 ◽  
Author(s):  
Paloma Trascasa-Castro ◽  
Christopher J. Smith

Climate change is one of the most serious problems that humans face today, but until now progress in stopping it has been slow. Climate simulations show that Earth will only stop warming when we reach “net zero” emissions. This means that carbon dioxide (CO2) emissions are cancelled out by an equal amount of greenhouse gas removal from the atmosphere. Worldwide efforts to achieve net zero emissions by 2050 are necessary to avoid some of the worst effects of climate change. Achieving net zero will require huge changes to our society. While there are some things we can all do to fight climate change, the biggest changes need to come from the way our businesses and countries are run, where we get our energy from, how we travel, and how much “stuff” we consume and waste. By taking urgent action, we can ensure the future well-being of billions of people worldwide.


2021 ◽  
Vol 9 (3) ◽  
pp. 247-256
Author(s):  
Shahzada Mudasir Rashid ◽  

The increase in production of greenhouse gases is a major cause of global warming for which livestock holds a big share in total greenhouse gas emission annually. The greenhouse gases produced by livestock include carbon dioxide, methane, nitrous oxide etc. Cattle and buffalo are the major contributors responsible for 90% emission of GHG followed by sheep and goat. Increase in carbon dioxide emission by livestock, decaying of dung in absence of oxygen, enteric fermentations are the major sources of greenhouse gas production by livestock species. Owing to greenhouse effect, the elevated greenhouse gases cause global warming resulting in the increase of surface temperature of earth, decreased precipitation, and huge damage to environment and affect the flora and fauna turning the conditions on earth unfavorable for survival of living forms. The major impacts are loss of biodiversity, loss of habitat for animals and plants, uncertainty in climate, increase in livestock diseases, damage to feed sources (plants), decrease in productivity of livestock species and many more. Mitigation measures needed to be focused on decreasing the global meat consumption, implementing carbon tax, feeding dietary oils/nitrates, manure management and its biodigestion, genetic manipulations besides strengthening of global livestock environmental assessment models.


Author(s):  
Dui Ma ◽  
Ting Jin ◽  
Keyu Xie ◽  
Haitao Huang

Converting CO2 into value-added fuels or chemical feedstocks through electrochemical reduction is one of the several promising avenues to reduce atmospheric carbon dioxide levels and alleviate global warming. This approach...


Author(s):  
Pietro Croce ◽  
Paolo Formichi ◽  
Filippo Landi

<p>The impact of climate change on climatic actions could significantly affect, in the mid-term future, the design of new structures as well as the reliability of existing ones designed in accordance to the provisions of present and past codes. Indeed, current climatic loads are defined under the assumption of stationary climate conditions but climate is not stationary and the current accelerated rate of changes imposes to consider its effects.</p><p>Increase of greenhouse gas emissions generally induces a global increase of the average temperature, but at local scale, the consequences of this phenomenon could be much more complex and even apparently not coherent with the global trend of main climatic parameters, like for example, temperature, rainfalls, snowfalls and wind velocity.</p><p>In the paper, a general methodology is presented, aiming to evaluate the impact of climate change on structural design, as the result of variations of characteristic values of the most relevant climatic actions over time. The proposed procedure is based on the analysis of an ensemble of climate projections provided according a medium and a high greenhouse gas emission scenario. Factor of change for extreme value distribution’s parameters and return values are thus estimated in subsequent time windows providing guidance for adaptation of the current definition of structural loads.</p><p>The methodology is illustrated together with the outcomes obtained for snow, wind and thermal actions in Italy. Finally, starting from the estimated changes in extreme value parameters, the influence on the long-term structural reliability can be investigated comparing the resulting time dependent reliability with the reference reliability levels adopted in modern Structural codes.</p>


2020 ◽  
pp. 94-110
Author(s):  
N.V. Dvoeglazova ◽  
B.V. Chubarenko ◽  
Y.A. Kozlova

The increase in greenhouse gases in the atmosphere is influenced to a greater extent by a degree of development of industry, a growth of electrification, deforestation, and the burning of fuel for the production of heating and electricity. The contribution of emissions of each of these factors and the ratio of greenhouse gases in them should be taken into account when developing the measures to prevent climate change. According to calculations of emissions from the territory of the Kaliningrad region the burning of fuel and energy resources are supposed to be playing the main role in the greenhouse gas emission from the territory of the Kaliningrad region. In statistical reference books this activity is described as the “activities for the production and distribution of electricity, gas and water.” The usage of this fuel in the energy sector is increasing: from 1742.4 thousand tons of standard fuel in 1991 up to 2193.9 in 2016. Such little increase in total emissions is due to the general technology improvement in the country. Carbon dioxide makes up the bulk of greenhouse gas emissions from the territory of the Kaliningrad region. The percentage of the gases in the total volume is as follows: CO2 - 96.7%, CH4 - 1%, N2 O - 2.3%. Its emissions for the period from 2013 to 2016 varied from 3,757.4 in 2014 to 4,091.7 in 2015 thousand tons of standard fuel, reaching its maximum value in 2015. The estimate presented in this paper is a lower estimate, since it does not take into account emissions from industrial processes, leaks, land use, waste, etc., as well as from some categories of emission sources due to the lack of data on the use of fuel in the Kaliningrad region. Among other things, the calculations of emissions of carbon dioxide, methane and nitrous oxide from the use of fuel by vehicles in 2016, which have shown to be 1.86 times less than from burning of fossil fuels for the same year (2032.87 Gg CO2 eq. and 3914.79 Gg CO2 eq., respectively) and to account for 34.5% of the total emissions, have been made. Moreover, according to the methodology for calculating emissions the factor of carbon dioxide absorption by the region’s forests has been taken into account. The amount of carbon dioxide absorbed by forests has shown to be only 11.9% of the emissions of this gas during the combustion of boiler and furnace fuel.


2021 ◽  
Vol 5 (4) ◽  
pp. 26-35
Author(s):  
Ayanda Pamella Deliwe ◽  
Shelley Beryl Beck ◽  
Elroy Eugene Smith

Objective – This paper sets out to assess perceptions of food retailers regarding climate change, greenhouse gas emission and sustainability in the Nelson Mandela Bay region of South Africa. The primary objective of this study is to investigate the food retailers’ greenhouse gas emissions strategies. Climate change catastrophic potential and the harmful effect that it has had on the community and businesses has led to it being given attention from social media and in literature. Methodology/Technique – This paper covered a literature review that provided the theoretical framework. The empirical study that was carried out included self-administered questionnaires which were distributed to 120 food retailers who were selected from the population using convenience sampling. Findings - The results revealed that most of the respondents were neutral towards the impact of operational factors regarding GHG emission in the food retail sector. Novelty - There is limited research that has been conducted among food retailers from the designated population. The study provided guidelines that will be of assistance to food retailers when dealing with climate change and greenhouse gas emissions impact in the food retail sector. Type of Paper: Empirical. JEL Classification: L66, Q54, Q59. Keywords: Climate Change; Food Retailers; Greenhouse Gas Emissions; Perceptions; Strategies; Sustainability Reference to this paper should be made as follows: Deliwe, A.P; Beck, S.B; Smith, E.E. (2021). Perceptions of Food Retailers Regarding Climate Change and Greenhouse Gas Emissions, Journal of Business and Economics Review, 5(4) 26–35. https://doi.org/10.35609/jber.2021.5.4(3)


Sign in / Sign up

Export Citation Format

Share Document