scholarly journals Impact of Livestock Enteric Emission on Climate and its Mitigation

2021 ◽  
Vol 9 (3) ◽  
pp. 247-256
Author(s):  
Shahzada Mudasir Rashid ◽  

The increase in production of greenhouse gases is a major cause of global warming for which livestock holds a big share in total greenhouse gas emission annually. The greenhouse gases produced by livestock include carbon dioxide, methane, nitrous oxide etc. Cattle and buffalo are the major contributors responsible for 90% emission of GHG followed by sheep and goat. Increase in carbon dioxide emission by livestock, decaying of dung in absence of oxygen, enteric fermentations are the major sources of greenhouse gas production by livestock species. Owing to greenhouse effect, the elevated greenhouse gases cause global warming resulting in the increase of surface temperature of earth, decreased precipitation, and huge damage to environment and affect the flora and fauna turning the conditions on earth unfavorable for survival of living forms. The major impacts are loss of biodiversity, loss of habitat for animals and plants, uncertainty in climate, increase in livestock diseases, damage to feed sources (plants), decrease in productivity of livestock species and many more. Mitigation measures needed to be focused on decreasing the global meat consumption, implementing carbon tax, feeding dietary oils/nitrates, manure management and its biodigestion, genetic manipulations besides strengthening of global livestock environmental assessment models.

2021 ◽  
Vol 8 (3) ◽  
pp. 118-124
Author(s):  
Krishna Anand ◽  
Sundara Raman

Spiraling continued increase in Emission of Green House Gases [GHG] play a significant role in impacting the environment and also human beings at large. Although recent studies have concentrated to an extent on developing schemes for reduction of Carbon dioxide emission and have identified methodologies in implementing the same, sufficient amount of studies have not been done on other greenhouse gases which also have adverse global impact as Carbon dioxide. Applications where methane and, nitrous oxide are emitted in abundance have continued to flourish. This work focuses on select methodologies in reducing all types of Greenhouse gases giving a larger amount of importance to ones which are more severe and the ones that cause depletion of ozone layer. Research findings have shown that majority of greenhouse gas emissions occur as a result of industry advances. Hence, as time is running out, there is an urgent need in identifying ways to mitigate these GHG emissions, thereby contributing to cleaner and healthier environment.


2020 ◽  
pp. 94-110
Author(s):  
N.V. Dvoeglazova ◽  
B.V. Chubarenko ◽  
Y.A. Kozlova

The increase in greenhouse gases in the atmosphere is influenced to a greater extent by a degree of development of industry, a growth of electrification, deforestation, and the burning of fuel for the production of heating and electricity. The contribution of emissions of each of these factors and the ratio of greenhouse gases in them should be taken into account when developing the measures to prevent climate change. According to calculations of emissions from the territory of the Kaliningrad region the burning of fuel and energy resources are supposed to be playing the main role in the greenhouse gas emission from the territory of the Kaliningrad region. In statistical reference books this activity is described as the “activities for the production and distribution of electricity, gas and water.” The usage of this fuel in the energy sector is increasing: from 1742.4 thousand tons of standard fuel in 1991 up to 2193.9 in 2016. Such little increase in total emissions is due to the general technology improvement in the country. Carbon dioxide makes up the bulk of greenhouse gas emissions from the territory of the Kaliningrad region. The percentage of the gases in the total volume is as follows: CO2 - 96.7%, CH4 - 1%, N2 O - 2.3%. Its emissions for the period from 2013 to 2016 varied from 3,757.4 in 2014 to 4,091.7 in 2015 thousand tons of standard fuel, reaching its maximum value in 2015. The estimate presented in this paper is a lower estimate, since it does not take into account emissions from industrial processes, leaks, land use, waste, etc., as well as from some categories of emission sources due to the lack of data on the use of fuel in the Kaliningrad region. Among other things, the calculations of emissions of carbon dioxide, methane and nitrous oxide from the use of fuel by vehicles in 2016, which have shown to be 1.86 times less than from burning of fossil fuels for the same year (2032.87 Gg CO2 eq. and 3914.79 Gg CO2 eq., respectively) and to account for 34.5% of the total emissions, have been made. Moreover, according to the methodology for calculating emissions the factor of carbon dioxide absorption by the region’s forests has been taken into account. The amount of carbon dioxide absorbed by forests has shown to be only 11.9% of the emissions of this gas during the combustion of boiler and furnace fuel.


2021 ◽  
Author(s):  
Mark Barrett ◽  
Tiziano Gallo Cassarino

Abstract Hydrogen produced from natural gas with steam methane reforming coupled with carbon capture and sequestration (SMRCCS) is proposed as fuel for consumer heating and cooking systems. This paper presents estimates of the energy losses and methane and carbon dioxide emission and global warming across the whole gas to hydrogen heat supply chain – from production to consumer. Processed natural gas is typically about 95% methane which is a potent greenhouse gas with a global warming potential (GWP) such that, with 20 year and 100 year GWP horizons, about 4% and 8% leakage respectively will cause as much global warming as the carbon dioxide formed when burning the methane. Data on gas emissions and SMRCCS costs and performance are sparse and wide ranging and this presents a major problem in accurately appraising the possible role of hydrogen from methane. The survey indicates emissions between 50 and 200 gCO2eq per unit of heat (kWhth) for SMRCCS H2 heat depending on leakage and GWP time horizon assumed. The second part of the paper reviews gas supply pricing and security and presents a cost minimised configuration of a SMRCCS hydrogen heating system derived with a simple model. Uncertainty in SMRCCS greenhouse gas emissions coupled with a net zero emission target and the long term issue of the physical and economic security of natural gas supply, bear on the potential advantages of SMRCCS as compared to other options, such as heating with renewable electricity driving consumer or district heating heat pumps.


2020 ◽  
Author(s):  
Fallon Fowler ◽  
Christopher J. Gillespie ◽  
Steve Denning ◽  
Shuijin Hu ◽  
Wes Watson

AbstractBy mixing and potentially aerating dung, dung beetles may affect the microbes producing the greenhouse gases (GHGs): carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O). Here, their sum-total global warming effect is described as the carbon dioxide equivalent (CO2e). Our literature analysis of reported GHG emissions and statistics suggests that most dung beetles do not, however, reduce CO2e even if they do affect individual GHGs. Here, we compare the GHG signature of homogenized (“premixed”) and unhomogenized (“unmixed”) dung with and without dung beetles to test whether mixing and burial influence GHGs. Mixing by hand or by dung beetles did not reduce any GHG – in fact, tunneling dung beetles increased N2O medians by ≥1.8x compared with dung-only. This suggests that either: 1) dung beetles do not meaningfully mitigate GHGs as a whole; 2) dung beetle burial activity affects GHGs more than mixing alone; or 3) greater dung beetle abundance and activity is required to produce an effect.


2021 ◽  
pp. 54-61
Author(s):  
N. V. Popov ◽  
◽  
I. L. Govor ◽  
M. L. Gitarskii ◽  
◽  
...  

The average weighted long-term component composition of associated petroleum gas burned at the fields in Russia is obtained, where the volume fractions of carbon dioxide (CO2) and methane (CH4) make up 0.8 and 66.4%, respectively. Based on it, the national emission factors of greenhouse gases from the flaring of associated petroleum gas are developed: the values are equal to 2.76 103 t CO2 and 0.0155 103 t CH4 per 1 106 m3 of the gas burnt. The calculations based on the emission factors led to the 37% increase in total equivalent emission of CO2 and CH4 as compared to the calculations based on the IPCC emission factors. The use of the national emission factors increases the reliability of the estimates of greenhouse gas emissions and the evaluation of their impact on climate.


2011 ◽  
Vol 393-395 ◽  
pp. 1385-1388
Author(s):  
Xiao Yan Zhang ◽  
Yan Lei Qiu ◽  
Pei Long Shen

Carbon dioxide is one of the most important greenhouse gases which have caused the global warm. Reducing greenhouse gases, especially carbon dioxide emission, has become the hot spot of environmental issues in the current society of international world. Based on the analysis of carbon dioxide emissions in the global environment and the present introduction of carbon tax as a tool for reducing carbon dioxide emissions, the paper, on a unique perspective, compared some related conceptions in deep and analyzed the principle of the means in reducing carbon dioxide from the perspective of macro and micro. Finally, the paper gave the conclusion of China's carbon tax in the current implementation of specific measures.


1992 ◽  
Vol 6 (2) ◽  
pp. 171-180 ◽  
Author(s):  
Robert W Crandall

Initially, the minimum corporate average fuel economy (CAFE) program was promoted as a policy to reduce U.S. vulnerability to oil shocks. In the past two years, however, concern about global warming has resulted in new political pressures to raise CAFE once again to reduce the growth in U.S. emissions of carbon dioxide, a greenhouse gas. In this paper, I do not attempt to provide a detailed critique of these two objectives. I simply take the goals as given and draw upon estimates from the empirical literature to show that CAFE is a very costly instrument for achieving them. In addition, I compare the costs of meeting the same objectives through a fuel or carbon tax.


2021 ◽  
Vol 48 (5) ◽  
pp. 328-342
Author(s):  
M. A Adeyemi ◽  
E. O. Akinfala

Greenhouse gases are becoming devastating on agriculture and environment because of its effect on climate and global warming. The aim of this review is to provide update on livestock greenhouse gases emission and rekindle available mitigation strategies. Recently, global warming and climate change have become one of the most discussed issues globally because of their negative effect on ecosystem worldwide. The livestock sub-sector as a major source of greenhouse gas emission, has been identified to contribute substantially to the recent rise in global warming and climate change. Livestock, most importantly ruminants plays a major role in the emission of methane, one of the potent greenhouse gases. This methane is usually released through enteric fermentation in animals and manure management system, though the latter account for smaller quantity. Estimate of methane emission inventory from livestock in Nigeria showed that 96.15 % of methane produced by livestock was by ruminants with cattle alone accounting for 74.06 %. With this background, strategies to date for reducing methane emissions should centre on ruminant. Efforts to reduce methane emissions from enteric fermentation generally focus on options for improving production efficiency. This has been demonstrated with intensive animal production systems. However, in Nigeria, this system has been successful only for non-ruminants while the extensive and semi extensive systems are being practiced for ruminants. In view of this, options for reducing emissions must be selected to be consistent with country-specific circumstances. Those circumstances should include animal management practices (including cultural traditions), nutrition and economic development priorities.     Les gaz à effet de serre deviennent dévastateurs de l'agriculture et de l'environnement en raison de son effet sur le climat et le réchauffement de la planète. L'objectif de cet examen est de fournir une mise à jour sur les stratégies d'atténuation disponibles des gaz à effet de serre de bétail. Récemment, le réchauffement climatique et le changement climatique sont devenus l'une des questions les plus discutées à l'échelle mondiale en raison de leur effet négatif sur l'écosystème mondial. Le sous-secteur de l'élevage en tant que source majeure d'émissions de gaz à effet de serre, a été identifié pour contribuer de manière substantielle à la hausse récente du réchauffement de la planète et du changement climatique. Le bétail, plus important encore, les ruminants jouent un rôle majeur dans l'émission de méthane, l'un des gaz à effet de serre puissants. Ce méthane est généralement libéré par la fermentation entérique chez les animaux et le système de gestion de fumier, bien que ces derniers représentent une plus petite quantité. L'estimation des stocks d'émissions de méthane provenant du bétail au Nigéria a montré que 96,15% de méthane produites par le bétail étaient par des ruminants avec des bovins à eux-mêmes représentant 74,06%. Avec ce contexte, des stratégies à ce jour pour réduire les émissions de méthane doivent être centrées sur le ruminant. Les efforts visant à réduire les émissions de méthane de la fermentation entérique se concentrent généralement sur les options d'amélioration de l'efficacité de la production. Cela a été démontré avec des systèmes de production d'animaux intensifs. Cependant, au Nigéria, ce système n'a abouti que pour les non-ruminants tandis que les systèmes étendus et semi-étendus sont pratiqués pour les ruminants. Compte tenu de cela, les options de réduction des émissions doivent être sélectionnées pour être cohérentes avec des circonstances spécifiques à chaque pays. Ces circonstances devraient inclure des pratiques de gestion des animaux (y compris des traditions culturelles), des priorités de nutrition et de développement économique


2021 ◽  
Author(s):  
Franz Weiss ◽  
Adrian Leip ◽  
Vera Eory

Abstract The global warming potential GWPgas(H) relates radiative forcing of a single pulse emission of a greenhouse gas, the absolute global warming potential AGWPgas(H), to the respective radiative forcing of carbon dioxide over a defined time horizon H. Mitigation measures targeting short-lived climate forcers (SLCFs) or reversible measures need to be applied permanently to be effective in the long run, but cost effectiveness for a permanent application of a measure differs from a single application. We propose a concept for an absolute global warming potential of permanent yearly pulses AGWP’gas(H), and several options for alternative indices to replace or complement the GWP: For the GWPgas(H/H) and the GWPcgas(H/H) we keep the AGWPCO2(H) in the denominator, which allows the direct comparison with conventional estimates, while for the GWP’gas(H) we define a new metric replacing the denominator by the AGWP’CO2(H). Different cost-effectiveness indicators can be defined respectively. We demonstrate the concept on the example of typical greenhouse gases emitted or removed by the agricultural sector: methane, nitrous oxide and carbon dioxide, fossil and stored as soil carbon. We show that, compared to GWP-based cost-effectiveness analysis, measures targeting soil carbon are discouraged relative to measures targeting methane, nitrous oxide and fossil carbon dioxide.


Author(s):  
Jeremy T. Kerr ◽  
Heather M. Kharouba

It is increasingly recognized that, as a result of ever-growing atmospheric inputs of greenhouse gases like carbon dioxide from the burning of fossil fuels, the climate is changing regionally and globally. This has been affirmed, in light of increasing scientific understanding, in the latest report of the Intergovernmental Panel on Climate Change (IPCC) in 2001, by the US National Academy of Sciences in its 2001 report, and most recently by a statement from the Science Academies of all G8 countries, along with China, India, and Brazil. This latter statement calls on the G8 nations to ‘Identify cost-effective steps that can be taken now to contribute to substantial and longterm reduction in net global greenhouse gas emission [and to] recognize that delayed action will increase the risk of adverse environmental effects and will likely incur a greater cost’. Global warming caused by elevated greenhouse gas levels is expressed with long time lags, which can be difficult to appreciate by those unfamiliar with physical systems. Once in the atmosphere, the characteristic residence time of a carbon dioxide molecule is a century. And the time taken for the ocean’s expansion to come to equilibrium with a given level of greenhouse warming is several centuries. If current trends continue, by around 2050 atmospheric carbon dioxide levels will have reached more than 500 parts per million, which is nearly double pre-industrial levels. The last time our planet experienced levels this high was some 20–40 million years ago, when sea levels were around 100m higher than today. It can also be difficult to relate intuitively to the seriousness of the roughly 0.7 °C average warming of the Earth’s surface over the past century. And the warning by the IPCC in its 2001 report, that global warming would be in the range of 1.4–5.8 °C by the end of this century, may also seem unalarming when we experience such temperature swings from one day to the next. There is, however, a huge difference between daily fluctuations, and global averages sustained year on year; the difference in average global temperature between today and the last ice age is only around 5 °C.


Sign in / Sign up

Export Citation Format

Share Document